Sem-nCG / tests.py
jsalvad0r's picture
left in manual test for progress bar
47cad7d
import unittest
import numpy as np
import torch
from sentence_transformers import SentenceTransformer
from .encoder_models import SBertEncoder, get_encoder, get_sbert_encoder
from .semncg import (
RankedGains,
compute_cosine_similarity,
compute_gain,
score_ncg,
compute_ncg,
_validate_input_format,
SemNCG
)
from .utils import (
get_gpu,
slice_embeddings,
is_nested_list_of_type,
flatten_list,
prep_sentences,
tokenize_and_prep_document
)
class TestUtils(unittest.TestCase):
def test_get_gpu(self):
gpu_count = torch.cuda.device_count()
gpu_available = torch.cuda.is_available()
# Test single boolean input
self.assertEqual(get_gpu(True), 0 if gpu_available else "cpu")
self.assertEqual(get_gpu(False), "cpu")
# Test single string input
self.assertEqual(get_gpu("cpu"), "cpu")
self.assertEqual(get_gpu("gpu"), 0 if gpu_available else "cpu")
self.assertEqual(get_gpu("cuda"), 0 if gpu_available else "cpu")
# Test single integer input
self.assertEqual(get_gpu(0), 0 if gpu_available else "cpu")
self.assertEqual(get_gpu(1), 1 if gpu_available else "cpu")
# Test list input with unique elements
self.assertEqual(get_gpu([True, "cpu", 0]), [0, "cpu"] if gpu_available else ["cpu", "cpu", "cpu"])
# Test list input with duplicate elements
self.assertEqual(get_gpu([0, 0, "gpu"]), 0 if gpu_available else ["cpu", "cpu", "cpu"])
# Test list input with duplicate elements of different types
self.assertEqual(get_gpu([True, 0, "gpu"]), 0 if gpu_available else ["cpu", "cpu", "cpu"])
# Test list input but only one element
self.assertEqual(get_gpu([True]), 0 if gpu_available else "cpu")
# Test list input with all integers
self.assertEqual(get_gpu(list(range(gpu_count))),
list(range(gpu_count)) if gpu_available else gpu_count * ["cpu"])
with self.assertRaises(ValueError):
get_gpu("invalid")
with self.assertRaises(ValueError):
get_gpu(torch.cuda.device_count())
def test_prep_sentences(self):
# Test normal case
self.assertEqual(prep_sentences(["Hello, world!", " This is a test. ", "!!!"]),
['Hello, world!', 'This is a test.'])
# Test case with only punctuations
with self.assertRaises(ValueError):
prep_sentences(["!!!", "..."])
# Test case with empty list
with self.assertRaises(ValueError):
prep_sentences([])
def test_tokenize_and_prep_document(self):
# Test tokenize=True with string input
self.assertEqual(tokenize_and_prep_document("Hello, world! This is a test.", True),
['Hello, world!', 'This is a test.'])
# Test tokenize=False with list of strings input
self.assertEqual(tokenize_and_prep_document(["Hello, world!", "This is a test."], False),
['Hello, world!', 'This is a test.'])
# Test tokenize=True with empty document
with self.assertRaises(ValueError):
tokenize_and_prep_document("!!! ...", True)
def test_slice_embeddings(self):
# Case 1
embeddings = np.random.rand(10, 5)
num_sentences = [3, 2, 5]
expected_output = [embeddings[:3], embeddings[3:5], embeddings[5:]]
self.assertTrue(
all(np.array_equal(a, b) for a, b in zip(slice_embeddings(embeddings, num_sentences),
expected_output))
)
# Case 2
num_sentences_nested = [[2, 1], [3, 4]]
expected_output_nested = [[embeddings[:2], embeddings[2:3]], [embeddings[3:6], embeddings[6:]]]
self.assertTrue(
slice_embeddings(embeddings, num_sentences_nested), expected_output_nested
)
# Case 3
document_sentences_count = [10, 8, 7]
reference_sentences_count = [5, 3, 2]
pred_sentences_count = [2, 2, 1]
all_embeddings = np.random.rand(
sum(document_sentences_count + reference_sentences_count + pred_sentences_count), 5,
)
embeddings = all_embeddings
expected_doc_embeddings = [embeddings[:10], embeddings[10:18], embeddings[18:25]]
embeddings = all_embeddings[25:]
expected_ref_embeddings = [embeddings[:5], embeddings[5:8], embeddings[8:10]]
embeddings = all_embeddings[35:]
expected_pred_embeddings = [embeddings[:2], embeddings[2:4], embeddings[4:5]]
doc_embeddings = slice_embeddings(all_embeddings, document_sentences_count)
ref_embeddings = slice_embeddings(all_embeddings[sum(document_sentences_count):], reference_sentences_count)
pred_embeddings = slice_embeddings(
all_embeddings[sum(document_sentences_count + reference_sentences_count):], pred_sentences_count
)
self.assertTrue(doc_embeddings, expected_doc_embeddings)
self.assertTrue(ref_embeddings, expected_ref_embeddings)
self.assertTrue(pred_embeddings, expected_pred_embeddings)
with self.assertRaises(TypeError):
slice_embeddings(embeddings, "invalid")
def test_is_nested_list_of_type(self):
# Test case: Depth 0, single element matching element_type
self.assertEqual(is_nested_list_of_type("test", str, 0), (True, ""))
# Test case: Depth 0, single element not matching element_type
is_valid, err_msg = is_nested_list_of_type("test", int, 0)
self.assertEqual(is_valid, False)
# Test case: Depth 1, list of elements matching element_type
self.assertEqual(is_nested_list_of_type(["apple", "banana"], str, 1), (True, ""))
# Test case: Depth 1, list of elements not matching element_type
is_valid, err_msg = is_nested_list_of_type([1, 2, 3], str, 1)
self.assertEqual(is_valid, False)
# Test case: Depth 0 (Wrong), list of elements matching element_type
is_valid, err_msg = is_nested_list_of_type([1, 2, 3], str, 0)
self.assertEqual(is_valid, False)
# Depth 2
self.assertEqual(is_nested_list_of_type([[1, 2], [3, 4]], int, 2), (True, ""))
self.assertEqual(is_nested_list_of_type([['1', '2'], ['3', '4']], str, 2), (True, ""))
is_valid, err_msg = is_nested_list_of_type([[1, 2], ["a", "b"]], int, 2)
self.assertEqual(is_valid, False)
# Depth 3
is_valid, err_msg = is_nested_list_of_type([[[1], [2]], [[3], [4]]], list, 3)
self.assertEqual(is_valid, False)
self.assertEqual(is_nested_list_of_type([[[1], [2]], [[3], [4]]], int, 3), (True, ""))
# Test case: Depth is negative, expecting ValueError
with self.assertRaises(ValueError):
is_nested_list_of_type([1, 2], int, -1)
def test_flatten_list(self):
self.assertEqual(flatten_list([1, [2, 3], [[4], 5]]), [1, 2, 3, 4, 5])
self.assertEqual(flatten_list([]), [])
self.assertEqual(flatten_list([1, 2, 3]), [1, 2, 3])
self.assertEqual(flatten_list([[[[1]]]]), [1])
class TestSBertEncoder(unittest.TestCase):
def setUp(self) -> None:
# Set up a test SentenceTransformer model
self.model_name = "paraphrase-distilroberta-base-v1"
self.sbert_model = get_sbert_encoder(self.model_name)
self.device = "cpu" # For testing on CPU
self.batch_size = 32
self.verbose = False
self.encoder = SBertEncoder(self.sbert_model, self.device, self.batch_size, self.verbose)
def test_encode_single_sentence(self):
sentence = "Hello, world!"
embeddings = self.encoder.encode([sentence])
self.assertEqual(embeddings.shape, (1, 768)) # Adjust shape based on your model's embedding dimension
def test_encode_multiple_sentences(self):
sentences = ["Hello, world!", "This is a test."]
embeddings = self.encoder.encode(sentences)
self.assertEqual(embeddings.shape, (2, 768)) # Adjust shape based on your model's embedding dimension
def test_get_sbert_encoder(self):
model_name = "paraphrase-distilroberta-base-v1"
sbert_model = get_sbert_encoder(model_name)
self.assertIsInstance(sbert_model, SentenceTransformer)
def test_encode_with_gpu(self):
if torch.cuda.is_available():
device = "cuda"
encoder = get_encoder(self.sbert_model, device, self.batch_size, self.verbose)
sentences = ["Hello, world!", "This is a test."]
embeddings = encoder.encode(sentences)
self.assertEqual(embeddings.shape, (2, 768)) # Adjust shape based on your model's embedding dimension
else:
self.skipTest("CUDA not available, skipping GPU test.")
def test_encode_multi_device(self):
if torch.cuda.device_count() < 2:
self.skipTest("Multi-GPU test requires at least 2 GPUs.")
else:
devices = ["cuda:0", "cuda:1"]
encoder = get_encoder(self.sbert_model, devices, self.batch_size, self.verbose)
sentences = ["This is a test sentence.", "Here is another sentence.", "This is a test sentence."]
embeddings = encoder.encode(sentences)
self.assertIsInstance(embeddings, np.ndarray)
self.assertEqual(embeddings.shape[0], 3)
self.assertEqual(embeddings.shape[1], self.encoder.model.get_sentence_embedding_dimension())
class TestGetEncoder(unittest.TestCase):
def setUp(self):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.batch_size = 8
self.verbose = False
def _base_test(self, model_name):
sbert_model = get_sbert_encoder(model_name)
encoder = get_encoder(sbert_model, self.device, self.batch_size, self.verbose)
# Assert
self.assertIsInstance(encoder, SBertEncoder)
self.assertEqual(encoder.device, self.device)
self.assertEqual(encoder.batch_size, self.batch_size)
self.assertEqual(encoder.verbose, self.verbose)
def test_get_sbert_encoder(self):
model_name = "stsb-roberta-large"
self._base_test(model_name)
def test_sbert_model(self):
model_name = "all-mpnet-base-v2"
self._base_test(model_name)
def test_huggingface_model(self):
"""Test Huggingface models which work with SBert library"""
model_name = "roberta-base"
self._base_test(model_name)
def test_get_encoder_environment_error(self): # This parameter is used when using patch decorator
model_name = "abc" # Wrong model_name
with self.assertRaises(EnvironmentError):
get_sbert_encoder(model_name)
def test_get_encoder_other_exception(self):
model_name = "apple/OpenELM-270M" # This model is not supported by SentenceTransformer lib
with self.assertRaises(RuntimeError):
get_sbert_encoder(model_name)
class TestRankedGainsDataclass(unittest.TestCase):
def test_ranked_gains_dataclass(self):
# Test initialization and attribute access
gt_gains = [("doc1", 0.8), ("doc2", 0.6)]
pred_gains = [("doc2", 0.7), ("doc1", 0.5)]
k = 2
ncg = 0.75
ranked_gains = RankedGains(gt_gains, pred_gains, k, ncg)
self.assertEqual(ranked_gains.gt_gains, gt_gains)
self.assertEqual(ranked_gains.pred_gains, pred_gains)
self.assertEqual(ranked_gains.k, k)
self.assertEqual(ranked_gains.ncg, ncg)
class TestComputeCosineSimilarity(unittest.TestCase):
def test_compute_cosine_similarity(self):
doc_embeds = np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]])
ref_embeds = np.array([[0.2, 0.3, 0.4], [0.5, 0.6, 0.7]])
# Test compute_cosine_similarity function
similarity_scores = compute_cosine_similarity(doc_embeds, ref_embeds)
print(similarity_scores)
# Example values, change as per actual function output
expected_scores = [0.980, 0.997]
self.assertAlmostEqual(similarity_scores[0], expected_scores[0], places=3)
self.assertAlmostEqual(similarity_scores[1], expected_scores[1], places=3)
class TestComputeGain(unittest.TestCase):
def test_compute_gain(self):
# Test compute_gain function
sim_scores = [0.8, 0.6, 0.7]
gains = compute_gain(sim_scores)
print(gains)
# Example values, change as per actual function output
expected_gains = [(0, 0.5), (2, 0.3333333333333333), (1, 0.16666666666666666)]
self.assertEqual(gains, expected_gains)
class TestScoreNcg(unittest.TestCase):
def test_score_ncg(self):
# Test score_ncg function
model_relevance = [0.8, 0.7, 0.6]
gt_relevance = [1.0, 0.9, 0.8]
ncg_score = score_ncg(model_relevance, gt_relevance)
expected_ncg = 0.778 # Example value, change as per actual function output
self.assertAlmostEqual(ncg_score, expected_ncg, places=3)
class TestComputeNcg(unittest.TestCase):
def test_compute_ncg(self):
# Test compute_ncg function
pred_gains = [(0, 0.8), (2, 0.7), (1, 0.6)]
gt_gains = [(0, 1.0), (1, 0.9), (2, 0.8)]
k = 3
ncg_score = compute_ncg(pred_gains, gt_gains, k)
expected_ncg = 1.0 # TODO: Confirm this with Dr. Santu
self.assertAlmostEqual(ncg_score, expected_ncg, places=6)
class TestValidateInputFormat(unittest.TestCase):
def test_validate_input_format(self):
# Test _validate_input_format function
tokenize_sentences = True
predictions = ["Prediction 1", "Prediction 2"]
references = ["Reference 1", "Reference 2"]
documents = ["Document 1", "Document 2"]
# No exception should be raised for valid input
try:
_validate_input_format(tokenize_sentences, predictions, references, documents)
except ValueError as e:
self.fail(f"_validate_input_format raised ValueError unexpectedly: {str(e)}")
# Test invalid input format
predictions_invalid = [["Sentence 1 in prediction 1.", "Sentence 2 in prediction 1."],
["Sentence 1 in prediction 2.", "Sentence 2 in prediction 2."]]
references_invalid = [["Sentences in reference 1."], ["Sentences in reference 2."]]
documents_invalid = [["Sentence 1 in document 1.", "Sentence 2 in document 1."],
["Sentence 1 in document 2.", "Sentence 2 in document 2."]]
with self.assertRaises(ValueError):
_validate_input_format(tokenize_sentences, predictions_invalid, references, documents)
with self.assertRaises(ValueError):
_validate_input_format(tokenize_sentences, predictions, references_invalid, documents)
with self.assertRaises(ValueError):
_validate_input_format(tokenize_sentences, predictions, references, documents_invalid)
class TestSemNCG(unittest.TestCase):
def setUp(self):
self.model_name = "stsb-distilbert-base"
self.metric = SemNCG(self.model_name)
def _basic_assertion(self, result, debug: bool = False):
self.assertIsInstance(result, tuple)
self.assertEqual(len(result), 2)
self.assertIsInstance(result[0], float)
self.assertTrue(0.0 <= result[0] <= 1.0)
self.assertIsInstance(result[1], list)
if debug:
for ranked_gain in result[1]:
self.assertTrue(isinstance(ranked_gain, RankedGains))
self.assertTrue(0.0 <= ranked_gain.ncg <= 1.0)
else:
for gain in result[1]:
self.assertTrue(isinstance(gain, float))
self.assertTrue(0.0 <= gain <= 1.0)
def test_compute_basic(self):
predictions = ["The cat sat on the mat.", "The quick brown fox jumps over the lazy dog."]
references = ["A cat was sitting on a mat.", "A quick brown fox jumped over a lazy dog."]
documents = ["There was a cat on a mat.", "The quick brown fox jumped over the lazy dog."]
result = self.metric.compute(predictions=predictions, references=references, documents=documents)
self._basic_assertion(result)
def test_compute_with_tokenization(self):
predictions = [["The cat sat on the mat."], ["The quick brown fox jumps over the lazy dog."]]
references = [["A cat was sitting on a mat."], ["A quick brown fox jumped over a lazy dog."]]
documents = [["There was a cat on a mat."], ["The quick brown fox jumped over the lazy dog."]]
result = self.metric.compute(
predictions=predictions, references=references, documents=documents, tokenize_sentences=False
)
self._basic_assertion(result)
def test_compute_with_pre_compute_embeddings(self):
predictions = ["The cat sat on the mat.", "The quick brown fox jumps over the lazy dog."]
references = ["A cat was sitting on a mat.", "A quick brown fox jumped over a lazy dog."]
documents = ["There was a cat on a mat.", "The quick brown fox jumped over the lazy dog."]
result = self.metric.compute(
predictions=predictions, references=references, documents=documents, pre_compute_embeddings=True
)
self._basic_assertion(result)
def test_compute_with_debug(self):
predictions = ["The cat sat on the mat.", "The quick brown fox jumps over the lazy dog."]
references = ["A cat was sitting on a mat.", "A quick brown fox jumped over a lazy dog."]
documents = ["There was a cat on a mat.", "The quick brown fox jumped over the lazy dog."]
result = self.metric.compute(
predictions=predictions, references=references, documents=documents, debug=True
)
self._basic_assertion(result, debug=True)
def test_compute_invalid_input_format(self):
predictions = "The cat sat on the mat."
references = ["A cat was sitting on a mat."]
documents = ["There was a cat on a mat."]
with self.assertRaises(ValueError):
self.metric.compute(predictions=predictions, references=references, documents=documents)
def test_bad_inputs(self):
def _call_metric(preds, refs, docs, tok):
with self.assertRaises(Exception) as ctx:
_ = self.metric.compute(
predictions=preds,
references=refs,
documents=docs,
tokenize_sentences=tok,
pre_compute_embeddings=True,
)
print(f"Raised Exception with message: {ctx.exception}")
return ""
# None Inputs
# Case I
tokenize_sentences = True
predictions = [None]
references = ["A cat was sitting on a mat."]
documents = ["There was a cat on a mat."]
print(f"Case I\n{_call_metric(predictions, references, documents, tokenize_sentences)}\n")
# Case II
tokenize_sentences = False
predictions = [["A cat was sitting on a mat.", None]]
references = [["A cat was sitting on a mat.", "A cat was sitting on a mat."]]
documents = [["There was a cat on a mat.", "There was a cat on a mat."]]
print(f"Case II\n{_call_metric(predictions, references, documents, tokenize_sentences)}\n")
# Empty Input
tokenize_sentences = True
predictions = []
references = ["A cat was sitting on a mat."]
documents = ["There was a cat on a mat."]
print(f"Case: Empty Input\n{_call_metric(predictions, references, documents, tokenize_sentences)}\n")
# Empty String Input
tokenize_sentences = True
predictions = [""]
references = ["A cat was sitting on a mat."]
documents = ["There was a cat on a mat."]
print(f"Case: Empty String Input\n{_call_metric(predictions, references, documents, tokenize_sentences)}\n")
def _test_check_verbose(self):
"""UNUSED: previously used to manually check the progress bar
This test should not be used since they rely on files that are
not kept in version control. this is purely just left here for
historical purposes and has the '_' prepended to the function
name to avoid being executed.
"""
import sqlite3
import string
con = sqlite3.connect('sem_ncg_samples.db')
cur = con.cursor()
data = cur.execute(
'SELECT * FROM sem_ncg_samples').fetchmany(100)
data = list(filter(
lambda x: x[0].translate(
str.maketrans('', '', string.punctuation)
).strip() != '',
data
))
preds, refs, docs = list(zip(*data))
result = self.metric.compute(
predictions=preds, references=refs,
documents=docs, verbose=True,
gpu=2
)
breakpoint()
if __name__ == '__main__':
unittest.main(verbosity=2)