Spaces:
Sleeping
Sleeping
Handled the edge cases and added better error message
Browse files
semncg.py
CHANGED
@@ -308,29 +308,31 @@ def _validate_input_format(
|
|
308 |
>>> _validate_input_format(tokenize_sentences, predictions, references, documents)
|
309 |
"""
|
310 |
if not (len(predictions) == len(references) == len(documents)):
|
311 |
-
raise ValueError(
|
|
|
|
|
|
|
312 |
|
313 |
if len(predictions) == 0:
|
314 |
raise ValueError("Can't have empty inputs")
|
315 |
|
316 |
-
def
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
raise ValueError("Predictions, References and Documents are not valid input format. Refer to documentation.")
|
334 |
|
335 |
|
336 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
|
|
308 |
>>> _validate_input_format(tokenize_sentences, predictions, references, documents)
|
309 |
"""
|
310 |
if not (len(predictions) == len(references) == len(documents)):
|
311 |
+
raise ValueError(
|
312 |
+
f"Predictions, References and Documents must have the same length. "
|
313 |
+
f"Got {len(predictions)} predictions, {len(references)} references and {len(documents)} documents."
|
314 |
+
)
|
315 |
|
316 |
if len(predictions) == 0:
|
317 |
raise ValueError("Can't have empty inputs")
|
318 |
|
319 |
+
def check_format(lst_obj, expected_depth: int, name: str):
|
320 |
+
is_valid, error_message = is_nested_list_of_type(lst_obj, element_type=str, depth=expected_depth)
|
321 |
+
if not is_valid:
|
322 |
+
raise ValueError(f"{name} are not in the expected format.\n"
|
323 |
+
f"Error: {error_message}.")
|
324 |
+
|
325 |
+
try:
|
326 |
+
if tokenize_sentences:
|
327 |
+
check_format(predictions, expected_depth=1, name="predictions")
|
328 |
+
check_format(references, expected_depth=1, name="references")
|
329 |
+
check_format(documents, expected_depth=1, name="documents")
|
330 |
+
else:
|
331 |
+
check_format(predictions, expected_depth=2, name="predictions")
|
332 |
+
check_format(references, expected_depth=2, name="references")
|
333 |
+
check_format(documents, expected_depth=2, name="documents")
|
334 |
+
except ValueError as ve:
|
335 |
+
raise ValueError(f"Input validation error: {ve}")
|
|
|
336 |
|
337 |
|
338 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
tests.py
CHANGED
@@ -139,29 +139,35 @@ class TestUtils(unittest.TestCase):
|
|
139 |
|
140 |
def test_is_nested_list_of_type(self):
|
141 |
# Test case: Depth 0, single element matching element_type
|
142 |
-
self.
|
143 |
|
144 |
# Test case: Depth 0, single element not matching element_type
|
145 |
-
|
|
|
146 |
|
147 |
# Test case: Depth 1, list of elements matching element_type
|
148 |
-
self.
|
149 |
|
150 |
# Test case: Depth 1, list of elements not matching element_type
|
151 |
-
|
|
|
152 |
|
153 |
# Test case: Depth 0 (Wrong), list of elements matching element_type
|
154 |
-
|
|
|
155 |
|
156 |
# Depth 2
|
157 |
-
self.
|
158 |
-
self.
|
159 |
-
|
|
|
160 |
|
161 |
# Depth 3
|
162 |
-
|
163 |
-
self.
|
|
|
164 |
|
|
|
165 |
with self.assertRaises(ValueError):
|
166 |
is_nested_list_of_type([1, 2], int, -1)
|
167 |
|
@@ -358,7 +364,7 @@ class TestValidateInputFormat(unittest.TestCase):
|
|
358 |
_validate_input_format(tokenize_sentences, predictions, references, documents_invalid)
|
359 |
|
360 |
|
361 |
-
class
|
362 |
def setUp(self):
|
363 |
self.model_name = "stsb-distilbert-base"
|
364 |
self.metric = SemNCG(self.model_name)
|
@@ -424,6 +430,48 @@ class TestSemnCG(unittest.TestCase):
|
|
424 |
with self.assertRaises(ValueError):
|
425 |
self.metric.compute(predictions=predictions, references=references, documents=documents)
|
426 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
427 |
|
428 |
if __name__ == '__main__':
|
429 |
unittest.main(verbosity=2)
|
|
|
139 |
|
140 |
def test_is_nested_list_of_type(self):
|
141 |
# Test case: Depth 0, single element matching element_type
|
142 |
+
self.assertEqual(is_nested_list_of_type("test", str, 0), (True, ""))
|
143 |
|
144 |
# Test case: Depth 0, single element not matching element_type
|
145 |
+
is_valid, err_msg = is_nested_list_of_type("test", int, 0)
|
146 |
+
self.assertEqual(is_valid, False)
|
147 |
|
148 |
# Test case: Depth 1, list of elements matching element_type
|
149 |
+
self.assertEqual(is_nested_list_of_type(["apple", "banana"], str, 1), (True, ""))
|
150 |
|
151 |
# Test case: Depth 1, list of elements not matching element_type
|
152 |
+
is_valid, err_msg = is_nested_list_of_type([1, 2, 3], str, 1)
|
153 |
+
self.assertEqual(is_valid, False)
|
154 |
|
155 |
# Test case: Depth 0 (Wrong), list of elements matching element_type
|
156 |
+
is_valid, err_msg = is_nested_list_of_type([1, 2, 3], str, 0)
|
157 |
+
self.assertEqual(is_valid, False)
|
158 |
|
159 |
# Depth 2
|
160 |
+
self.assertEqual(is_nested_list_of_type([[1, 2], [3, 4]], int, 2), (True, ""))
|
161 |
+
self.assertEqual(is_nested_list_of_type([['1', '2'], ['3', '4']], str, 2), (True, ""))
|
162 |
+
is_valid, err_msg = is_nested_list_of_type([[1, 2], ["a", "b"]], int, 2)
|
163 |
+
self.assertEqual(is_valid, False)
|
164 |
|
165 |
# Depth 3
|
166 |
+
is_valid, err_msg = is_nested_list_of_type([[[1], [2]], [[3], [4]]], list, 3)
|
167 |
+
self.assertEqual(is_valid, False)
|
168 |
+
self.assertEqual(is_nested_list_of_type([[[1], [2]], [[3], [4]]], int, 3), (True, ""))
|
169 |
|
170 |
+
# Test case: Depth is negative, expecting ValueError
|
171 |
with self.assertRaises(ValueError):
|
172 |
is_nested_list_of_type([1, 2], int, -1)
|
173 |
|
|
|
364 |
_validate_input_format(tokenize_sentences, predictions, references, documents_invalid)
|
365 |
|
366 |
|
367 |
+
class TestSemNCG(unittest.TestCase):
|
368 |
def setUp(self):
|
369 |
self.model_name = "stsb-distilbert-base"
|
370 |
self.metric = SemNCG(self.model_name)
|
|
|
430 |
with self.assertRaises(ValueError):
|
431 |
self.metric.compute(predictions=predictions, references=references, documents=documents)
|
432 |
|
433 |
+
def test_bad_inputs(self):
|
434 |
+
def _call_metric(preds, refs, docs, tok):
|
435 |
+
with self.assertRaises(Exception) as ctx:
|
436 |
+
_ = self.metric.compute(
|
437 |
+
predictions=preds,
|
438 |
+
references=refs,
|
439 |
+
documents=docs,
|
440 |
+
tokenize_sentences=tok,
|
441 |
+
pre_compute_embeddings=True,
|
442 |
+
)
|
443 |
+
print(f"Raised Exception with message: {ctx.exception}")
|
444 |
+
return ""
|
445 |
+
|
446 |
+
# None Inputs
|
447 |
+
# Case I
|
448 |
+
tokenize_sentences = True
|
449 |
+
predictions = [None]
|
450 |
+
references = ["A cat was sitting on a mat."]
|
451 |
+
documents = ["There was a cat on a mat."]
|
452 |
+
print(f"Case I\n{_call_metric(predictions, references, documents, tokenize_sentences)}\n")
|
453 |
+
|
454 |
+
# Case II
|
455 |
+
tokenize_sentences = False
|
456 |
+
predictions = [["A cat was sitting on a mat.", None]]
|
457 |
+
references = [["A cat was sitting on a mat.", "A cat was sitting on a mat."]]
|
458 |
+
documents = [["There was a cat on a mat.", "There was a cat on a mat."]]
|
459 |
+
print(f"Case II\n{_call_metric(predictions, references, documents, tokenize_sentences)}\n")
|
460 |
+
|
461 |
+
# Empty Input
|
462 |
+
tokenize_sentences = True
|
463 |
+
predictions = []
|
464 |
+
references = ["A cat was sitting on a mat."]
|
465 |
+
documents = ["There was a cat on a mat."]
|
466 |
+
print(f"Case: Empty Input\n{_call_metric(predictions, references, documents, tokenize_sentences)}\n")
|
467 |
+
|
468 |
+
# Empty String Input
|
469 |
+
tokenize_sentences = True
|
470 |
+
predictions = [""]
|
471 |
+
references = ["A cat was sitting on a mat."]
|
472 |
+
documents = ["There was a cat on a mat."]
|
473 |
+
print(f"Case: Empty String Input\n{_call_metric(predictions, references, documents, tokenize_sentences)}\n")
|
474 |
+
|
475 |
|
476 |
if __name__ == '__main__':
|
477 |
unittest.main(verbosity=2)
|
utils.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import string
|
2 |
-
from typing import List, Union
|
3 |
|
4 |
import nltk
|
5 |
import torch
|
@@ -167,45 +167,66 @@ def flatten_list(nested_list: list) -> list:
|
|
167 |
return flat_list
|
168 |
|
169 |
|
170 |
-
def is_nested_list_of_type(lst_obj, element_type, depth: int) -> bool:
|
171 |
"""
|
172 |
-
|
173 |
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
Returns:
|
180 |
-
- bool: True if lst_obj is a nested list of the specified type up to the given depth, False otherwise.
|
181 |
|
182 |
-
|
183 |
-
|
|
|
|
|
184 |
|
185 |
-
|
186 |
-
|
187 |
-
# Test cases
|
188 |
-
is_nested_list_of_type("test", str, 0) # Returns True
|
189 |
-
is_nested_list_of_type([1, 2, 3], str, 0) # Returns False
|
190 |
-
is_nested_list_of_type(["apple", "banana"], str, 1) # Returns True
|
191 |
-
is_nested_list_of_type([[1, 2], [3, 4]], int, 2) # Returns True
|
192 |
-
is_nested_list_of_type([[1, 2], ["a", "b"]], int, 2) # Returns False
|
193 |
-
is_nested_list_of_type([[[1], [2]], [[3], [4]]], int, 3) # Returns True
|
194 |
-
```
|
195 |
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
"""
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
|
210 |
|
211 |
def slice_embeddings(embeddings: NDArray, num_sentences: NumSentencesType) -> EmbeddingSlicesType:
|
|
|
1 |
import string
|
2 |
+
from typing import List, Union, Tuple
|
3 |
|
4 |
import nltk
|
5 |
import torch
|
|
|
167 |
return flat_list
|
168 |
|
169 |
|
170 |
+
def is_nested_list_of_type(lst_obj, element_type, depth: int) -> Tuple[bool, str]:
|
171 |
"""
|
172 |
+
Check if the given object is a nested list of a specific type up to a specified depth.
|
173 |
|
174 |
+
Args:
|
175 |
+
- lst_obj: The object to check, expected to be a list or a single element.
|
176 |
+
- element_type: The type that each element in the nested list should match.
|
177 |
+
- depth (int): The depth of nesting to check. Must be non-negative.
|
|
|
|
|
|
|
178 |
|
179 |
+
Returns:
|
180 |
+
- Tuple[bool, str]: A tuple containing:
|
181 |
+
- A boolean indicating if lst_obj is a nested list of the specified type up to the given depth.
|
182 |
+
- A string containing an error message if the check fails, or an empty string if the check passes.
|
183 |
|
184 |
+
Raises:
|
185 |
+
- ValueError: If depth is negative.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
|
187 |
+
Example:
|
188 |
+
```python
|
189 |
+
# Test cases
|
190 |
+
is_nested_list_of_type("test", str, 0) # Returns (True, "")
|
191 |
+
is_nested_list_of_type([1, 2, 3], str, 0) # Returns (False, "Element is of type int, expected type str.")
|
192 |
+
is_nested_list_of_type(["apple", "banana"], str, 1) # Returns (True, "")
|
193 |
+
is_nested_list_of_type([[1, 2], [3, 4]], int, 2) # Returns (True, "")
|
194 |
+
is_nested_list_of_type([[1, 2], ["a", "b"]], int, 2) # Returns (False, "Element at index 1 is of incorrect type.")
|
195 |
+
is_nested_list_of_type([[[1], [2]], [[3], [4]]], int, 3) # Returns (True, "")
|
196 |
+
```
|
197 |
+
|
198 |
+
Explanation:
|
199 |
+
- The function checks if `lst_obj` is a nested list of elements of type `element_type` up to `depth` levels deep.
|
200 |
+
- If `depth` is 0, it checks if `lst_obj` itself is of type `element_type`.
|
201 |
+
- If `depth` is greater than 0, it recursively checks each level of nesting to ensure all elements match
|
202 |
+
`element_type`.
|
203 |
+
- Returns a tuple containing a boolean and an error message. The boolean is `True` if `lst_obj` matches the
|
204 |
+
criteria, `False` otherwise. The error message provides details if the check fails.
|
205 |
+
- Raises a `ValueError` if `depth` is negative, as depth must be a non-negative integer.
|
206 |
"""
|
207 |
+
orig_depth = depth
|
208 |
+
|
209 |
+
def _is_nested_list_of_type(lst_o, e_type, d) -> Tuple[bool, str]:
|
210 |
+
if d == 0:
|
211 |
+
if isinstance(lst_o, e_type):
|
212 |
+
return True, ""
|
213 |
+
else:
|
214 |
+
return False, f"Element is of type {type(lst_o).__name__}, expected type {e_type.__name__}."
|
215 |
+
elif d > 0:
|
216 |
+
if isinstance(lst_o, list):
|
217 |
+
for i, item in enumerate(lst_o):
|
218 |
+
is_valid, err = _is_nested_list_of_type(item, e_type, d - 1)
|
219 |
+
if not is_valid:
|
220 |
+
msg = (f"Element at index {i} has incorrect type.\nGiven Element at index {i}: {lst_o[i]}"
|
221 |
+
f"\n{err}") if d == orig_depth else err
|
222 |
+
return False, msg
|
223 |
+
return True, ""
|
224 |
+
else:
|
225 |
+
return False, f"Object is not a list but {type(lst_o)}."
|
226 |
+
else:
|
227 |
+
raise ValueError("Depth can't be negative")
|
228 |
+
|
229 |
+
return _is_nested_list_of_type(lst_obj, element_type, depth)
|
230 |
|
231 |
|
232 |
def slice_embeddings(embeddings: NDArray, num_sentences: NumSentencesType) -> EmbeddingSlicesType:
|