File size: 27,597 Bytes
a249916
 
 
 
 
42c888f
a249916
42c888f
f2c2a9e
a249916
6deb98d
 
 
a249916
 
 
f2c2a9e
 
 
 
 
 
 
 
a249916
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c33aa3
a249916
 
2c33aa3
 
 
 
a249916
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57111be
a249916
 
57111be
 
a249916
 
57111be
a249916
 
57111be
 
a249916
 
57111be
 
a249916
 
57111be
 
 
 
 
a249916
 
57111be
 
 
a249916
57111be
a249916
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
251bfda
 
 
 
a249916
251bfda
 
 
 
a249916
251bfda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a249916
 
42c888f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2c2a9e
 
 
 
 
 
 
 
 
135117a
f2c2a9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bc5186
f2c2a9e
135117a
 
 
 
 
 
 
 
 
 
 
 
4bc5186
135117a
 
 
 
 
4bc5186
135117a
 
 
 
 
 
 
4bc5186
135117a
 
 
 
 
 
4bc5186
135117a
 
 
 
 
 
4bc5186
135117a
 
 
 
 
4bc5186
 
135117a
 
 
 
 
 
4bc5186
135117a
 
 
 
 
4bc5186
135117a
 
 
 
 
 
 
4bc5186
42c888f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57111be
 
536d81c
57111be
 
 
 
 
 
 
 
 
 
536d81c
57111be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bf9a66
 
57111be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42c888f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2c2a9e
42c888f
f2c2a9e
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
import statistics
import unittest

import numpy as np
import torch
from numpy.testing import assert_almost_equal
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
from unittest import TestLoader

from .encoder_models import SBertEncoder, get_encoder
from .semf1 import SemF1, _compute_cosine_similarity, _validate_input_format
from .utils import get_gpu, slice_embeddings, is_nested_list_of_type, flatten_list, compute_f1, Scores


class TestUtils(unittest.TestCase):
    def runTest(self):
        self.test_get_gpu()
        self.test_slice_embeddings()
        self.test_is_nested_list_of_type()
        self.test_flatten_list()
        self.test_compute_f1()
        self.test_scores()

    def test_get_gpu(self):
        gpu_count = torch.cuda.device_count()
        gpu_available = torch.cuda.is_available()

        # Test single boolean input
        self.assertEqual(get_gpu(True), 0 if gpu_available else "cpu")
        self.assertEqual(get_gpu(False), "cpu")

        # Test single string input
        self.assertEqual(get_gpu("cpu"), "cpu")
        self.assertEqual(get_gpu("gpu"), 0 if gpu_available else "cpu")
        self.assertEqual(get_gpu("cuda"), 0 if gpu_available else "cpu")

        # Test single integer input
        self.assertEqual(get_gpu(0), 0 if gpu_available else "cpu")
        self.assertEqual(get_gpu(1), 1 if gpu_available else "cpu")

        # Test list input with unique elements
        self.assertEqual(get_gpu([True, "cpu", 0]), [0, "cpu"] if gpu_available else ["cpu", "cpu", "cpu"])

        # Test list input with duplicate elements
        self.assertEqual(get_gpu([0, 0, "gpu"]), 0 if gpu_available else ["cpu", "cpu", "cpu"])

        # Test list input with duplicate elements of different types
        self.assertEqual(get_gpu([True, 0, "gpu"]), 0 if gpu_available else ["cpu", "cpu", "cpu"])

        # Test list input but only one element
        self.assertEqual(get_gpu([True]), 0 if gpu_available else "cpu")

        # Test list input with all integers
        self.assertEqual(get_gpu(list(range(gpu_count))),
                         list(range(gpu_count)) if gpu_available else gpu_count * ["cpu"])

        with self.assertRaises(ValueError):
            get_gpu("invalid")

        with self.assertRaises(ValueError):
            get_gpu(torch.cuda.device_count())

    def test_slice_embeddings(self):
        embeddings = np.random.rand(10, 5)
        num_sentences = [3, 2, 5]
        expected_output = [embeddings[:3], embeddings[3:5], embeddings[5:]]
        self.assertTrue(
            all(np.array_equal(a, b) for a, b in zip(slice_embeddings(embeddings, num_sentences),
                                                     expected_output))
        )

        num_sentences_nested = [[2, 1], [3, 4]]
        expected_output_nested = [[embeddings[:2], embeddings[2:3]], [embeddings[3:6], embeddings[6:]]]
        self.assertTrue(
            slice_embeddings(embeddings, num_sentences_nested), expected_output_nested
        )

        with self.assertRaises(TypeError):
            slice_embeddings(embeddings, "invalid")

    def test_is_nested_list_of_type(self):
        # Test case: Depth 0, single element matching element_type
        self.assertEqual(is_nested_list_of_type("test", str, 0), (True, ""))

        # Test case: Depth 0, single element not matching element_type
        is_valid, err_msg = is_nested_list_of_type("test", int, 0)
        self.assertEqual(is_valid, False)

        # Test case: Depth 1, list of elements matching element_type
        self.assertEqual(is_nested_list_of_type(["apple", "banana"], str, 1), (True, ""))

        # Test case: Depth 1, list of elements not matching element_type
        is_valid, err_msg = is_nested_list_of_type([1, 2, 3], str, 1)
        self.assertEqual(is_valid, False)

        # Test case: Depth 0 (Wrong), list of elements matching element_type
        is_valid, err_msg = is_nested_list_of_type([1, 2, 3], str, 0)
        self.assertEqual(is_valid, False)

        # Depth 2
        self.assertEqual(is_nested_list_of_type([[1, 2], [3, 4]], int, 2), (True, ""))
        self.assertEqual(is_nested_list_of_type([['1', '2'], ['3', '4']], str, 2), (True, ""))
        is_valid, err_msg = is_nested_list_of_type([[1, 2], ["a", "b"]], int, 2)
        self.assertEqual(is_valid, False)


        # Depth 3
        is_valid, err_msg = is_nested_list_of_type([[[1], [2]], [[3], [4]]], list, 3)
        self.assertEqual(is_valid, False)
        self.assertEqual(is_nested_list_of_type([[[1], [2]], [[3], [4]]], int, 3), (True, ""))

        # Test case: Depth is negative, expecting ValueError
        with self.assertRaises(ValueError):
            is_nested_list_of_type([1, 2], int, -1)

    def test_flatten_list(self):
        self.assertEqual(flatten_list([1, [2, 3], [[4], 5]]), [1, 2, 3, 4, 5])
        self.assertEqual(flatten_list([]), [])
        self.assertEqual(flatten_list([1, 2, 3]), [1, 2, 3])
        self.assertEqual(flatten_list([[[[1]]]]), [1])

    def test_compute_f1(self):
        self.assertAlmostEqual(compute_f1(0.5, 0.5), 0.5)
        self.assertAlmostEqual(compute_f1(1, 0), 0.0)
        self.assertAlmostEqual(compute_f1(0, 1), 0.0)
        self.assertAlmostEqual(compute_f1(1, 1), 1.0)

    def test_scores(self):
        scores = Scores(precision=0.8, recall=[0.7, 0.9])
        self.assertAlmostEqual(scores.f1, compute_f1(0.8, statistics.fmean([0.7, 0.9])))


class TestSBertEncoder(unittest.TestCase):
    def setUp(self, device=None):
        if device is None:
            self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        else:
            self.device = device
        self.model_name = "stsb-roberta-large"
        self.batch_size = 8
        self.verbose = False
        self.encoder = SBertEncoder(self.model_name, self.device, self.batch_size, self.verbose)

    def test_initialization(self):
        self.assertIsInstance(self.encoder.model, SentenceTransformer)
        self.assertEqual(self.encoder.device, self.device)
        self.assertEqual(self.encoder.batch_size, self.batch_size)
        self.assertEqual(self.encoder.verbose, self.verbose)

    def test_encode_single_device(self):
        sentences = ["This is a test sentence.", "Here is another sentence."]
        embeddings = self.encoder.encode(sentences)
        self.assertIsInstance(embeddings, np.ndarray)
        self.assertEqual(embeddings.shape[0], len(sentences))
        self.assertEqual(embeddings.shape[1], self.encoder.model.get_sentence_embedding_dimension())

    def test_encode_multi_device(self):
        if torch.cuda.device_count() < 2:
            self.skipTest("Multi-GPU test requires at least 2 GPUs.")
        else:
            devices = ["cuda:0", "cuda:1"]
            self.setUp(devices)
            sentences = ["This is a test sentence.", "Here is another sentence.", "This is a test sentence."]
            embeddings = self.encoder.encode(sentences)
            self.assertIsInstance(embeddings, np.ndarray)
            self.assertEqual(embeddings.shape[0], 3)
            self.assertEqual(embeddings.shape[1], self.encoder.model.get_sentence_embedding_dimension())


class TestGetEncoder(unittest.TestCase):
    def setUp(self):
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        self.batch_size = 8
        self.verbose = False

    def _base_test(self, model_name):
        encoder = get_encoder(model_name, self.device, self.batch_size, self.verbose)

        # Assert
        self.assertIsInstance(encoder, SBertEncoder)
        self.assertEqual(encoder.device, self.device)
        self.assertEqual(encoder.batch_size, self.batch_size)
        self.assertEqual(encoder.verbose, self.verbose)

    def test_get_sbert_encoder(self):
        model_name = "stsb-roberta-large"
        self._base_test(model_name)

    def test_sbert_model(self):
        model_name = "all-mpnet-base-v2"
        self._base_test(model_name)

    def test_huggingface_model(self):
        """Test Huggingface models which work with SBert library"""
        model_name = "roberta-base"
        self._base_test(model_name)

    def test_get_encoder_environment_error(self):  # This parameter is used when using patch decorator
        model_name = "abc"  # Wrong model_name
        with self.assertRaises(EnvironmentError):
            get_encoder(model_name, self.device, self.batch_size, self.verbose)

    def test_get_encoder_other_exception(self):
        model_name = "apple/OpenELM-270M"  # This model is not supported by SentenceTransformer lib
        with self.assertRaises(RuntimeError):
            get_encoder(model_name, self.device, self.batch_size, self.verbose)


class TestSemF1(unittest.TestCase):
    def setUp(self):
        self.semf1_metric = SemF1()  # semf1_metric

        # Example cases, #Samples = 1
        self.untokenized_single_reference_predictions = [
            "This is a prediction sentence 1. This is a prediction sentence 2."]
        self.untokenized_single_reference_references = [
            "This is a reference sentence 1. This is a reference sentence 2."]

        self.tokenized_single_reference_predictions = [
            ["This is a prediction sentence 1.", "This is a prediction sentence 2."],
        ]
        self.tokenized_single_reference_references = [
            ["This is a reference sentence 1.", "This is a reference sentence 2."],
        ]

        self.untokenized_multi_reference_predictions = [
            "Prediction sentence 1. Prediction sentence 2."
        ]
        self.untokenized_multi_reference_references = [
            ["Reference sentence 1. Reference sentence 2.", "Alternative reference 1. Alternative reference 2."],
        ]

        self.tokenized_multi_reference_predictions = [
            ["Prediction sentence 1.", "Prediction sentence 2."],
        ]
        self.tokenized_multi_reference_references = [
            [
                ["Reference sentence 1.", "Reference sentence 2."],
                ["Alternative reference 1.", "Alternative reference 2."]
            ],
        ]
        self.multi_sample_refs = [
            'this is the first reference sample',
            'this is the second reference sample',
        ]
        self.multi_sample_preds = [
            'this is the first prediction sample',
            'this is the second prediction sample',
        ]
    
    def test_aggregate_multi_sample(self):
        """
        check if a `Scores` class is returned instead of a list of 
        `Scores`
        """
        scores = self.semf1_metric.compute(
            predictions=self.multi_sample_preds,
            references=self.multi_sample_refs,
            tokenize_sentences=True,
            multi_references=False,
            gpu=False,
            batch_size=32,
            verbose=False,
            aggregate=True,
        )
        self.assertIsInstance(scores, Scores)
        print(f'Score: {scores}')

    def test_aggregate_untokenized_single_ref(self):
        scores = self.semf1_metric.compute(
            predictions=self.untokenized_single_reference_predictions,
            references=self.untokenized_single_reference_references,
            tokenize_sentences=True,
            multi_references=False,
            gpu=False,
            batch_size=32,
            verbose=False,
            aggregate=True,
        )
        self.assertIsInstance(scores, Scores)
        print(f'Score: {scores}')

    def test_aggregate_tokenized_single_ref(self):
        scores = self.semf1_metric.compute(
            predictions=self.tokenized_single_reference_predictions,
            references=self.tokenized_single_reference_references,
            tokenize_sentences=False,
            multi_references=False,
            gpu=False,
            batch_size=32,
            verbose=False,
            aggregate=True,
        )
        self.assertIsInstance(scores, Scores)
        print(f'Score: {scores}')

    def test_aggregate_untokenized_multi_ref(self):
        scores = self.semf1_metric.compute(
            predictions=self.untokenized_multi_reference_predictions,
            references=self.untokenized_multi_reference_references,
            tokenize_sentences=True,
            multi_references=True,
            gpu=False,
            batch_size=32,
            verbose=False,
            aggregate=True,
        )
        self.assertIsInstance(scores, Scores)
        print(f'Score: {scores}')

    def test_aggregate_tokenized_multi_ref(self):
        scores = self.semf1_metric.compute(
            predictions=self.tokenized_multi_reference_predictions,
            references=self.tokenized_multi_reference_references,
            tokenize_sentences=False,
            multi_references=True,
            gpu=False,
            batch_size=32,
            verbose=False,
            aggregate=True,
        )
        self.assertIsInstance(scores, Scores)
        print(f'Score: {scores}')

    def test_aggregate_same_pred_and_ref(self):
        scores = self.semf1_metric.compute(
            predictions=self.tokenized_single_reference_predictions,
            references=self.tokenized_single_reference_predictions,
            tokenize_sentences=False,
            multi_references=False,
            gpu=False,
            batch_size=32,
            verbose=False,
            aggregate=True,
        )
        self.assertIsInstance(scores, Scores)
        print(f'Score: {scores}')

    def test_untokenized_single_reference(self):
        scores = self.semf1_metric.compute(
            predictions=self.untokenized_single_reference_predictions,
            references=self.untokenized_single_reference_references,
            tokenize_sentences=True,
            multi_references=False,
            gpu=False,
            batch_size=32,
            verbose=False
        )
        self.assertIsInstance(scores, list)
        self.assertEqual(len(scores), len(self.untokenized_single_reference_predictions))

    def test_tokenized_single_reference(self):
        scores = self.semf1_metric.compute(
            predictions=self.tokenized_single_reference_predictions,
            references=self.tokenized_single_reference_references,
            tokenize_sentences=False,
            multi_references=False,
            gpu=False,
            batch_size=32,
            verbose=False
        )
        self.assertIsInstance(scores, list)
        self.assertEqual(len(scores), len(self.tokenized_single_reference_predictions))

        for score in scores:
            self.assertIsInstance(score, Scores)
            self.assertTrue(0.0 <= score.precision <= 1.0)
            self.assertTrue(all(0.0 <= recall <= 1.0 for recall in score.recall))

    def test_untokenized_multi_reference(self):
        scores = self.semf1_metric.compute(
            predictions=self.untokenized_multi_reference_predictions,
            references=self.untokenized_multi_reference_references,
            tokenize_sentences=True,
            multi_references=True,
            gpu=False,
            batch_size=32,
            verbose=False
        )
        self.assertIsInstance(scores, list)
        self.assertEqual(len(scores), len(self.untokenized_multi_reference_predictions))

    def test_tokenized_multi_reference(self):
        scores = self.semf1_metric.compute(
            predictions=self.tokenized_multi_reference_predictions,
            references=self.tokenized_multi_reference_references,
            tokenize_sentences=False,
            multi_references=True,
            gpu=False,
            batch_size=32,
            verbose=False
        )
        self.assertIsInstance(scores, list)
        self.assertEqual(len(scores), len(self.tokenized_multi_reference_predictions))

        for score in scores:
            self.assertIsInstance(score, Scores)
            self.assertTrue(0.0 <= score.precision <= 1.0)
            self.assertTrue(all(0.0 <= recall <= 1.0 for recall in score.recall))

    def test_same_predictions_and_references(self):
        scores = self.semf1_metric.compute(
            predictions=self.tokenized_single_reference_predictions,
            references=self.tokenized_single_reference_predictions,
            tokenize_sentences=False,
            multi_references=False,
            gpu=False,
            batch_size=32,
            verbose=False
        )

        self.assertIsInstance(scores, list)
        self.assertEqual(len(scores), len(self.tokenized_single_reference_predictions))

        for score in scores:
            self.assertIsInstance(score, Scores)
            self.assertAlmostEqual(score.precision, 1.0, places=6)
            assert_almost_equal(score.recall, 1, decimal=5, err_msg="Not all values are almost equal to 1")

    def test_exact_output_scores(self):
        predictions = [
            ["I go to School.", "You are stupid."],
            ["I love adventure sports."],
        ]
        references = [
            ["I go to playground.", "You are genius.", "You need to be admired."],
            ["I love adventure sports."],
        ]
        scores = self.semf1_metric.compute(
            predictions=predictions,
            references=references,
            tokenize_sentences=False,
            multi_references=False,
            gpu=False,
            batch_size=32,
            verbose=False,
            model_type="use",
        )

        self.assertIsInstance(scores, list)
        self.assertEqual(len(scores), len(predictions))

        score = scores[0]
        self.assertIsInstance(score, Scores)
        self.assertAlmostEqual(score.precision, 0.73, places=2)
        self.assertAlmostEqual(score.recall[0], 0.63, places=2)

    def test_none_input(self):
        def _call_metric(preds, refs, tok, mul_ref):
            with self.assertRaises(Exception) as ctx:
                _ = self.semf1_metric.compute(
                    predictions=preds,
                    references=refs,
                    tokenize_sentences=tok,
                    multi_references=mul_ref,
                    gpu=False,
                    batch_size=32,
                    verbose=False,
                    model_type="use",
                )
            print(f"Raised Exception with message: {ctx.exception}")
            return ""

        # # Case 1: tokenize_sentences = True, multi_references = True
        tokenize_sentences = True
        multi_references = True
        predictions = [
            "I go to School. You are stupid.",
            "I go to School. You are stupid.",
        ]
        references = [
            ["I am", "I am"],
            [None, "I am"],
        ]
        print(f"Case I\n{_call_metric(predictions, references, tokenize_sentences, multi_references)}\n")

        # Case 2: tokenize_sentences = False, multi_references = True
        tokenize_sentences = False
        multi_references = True
        predictions = [
            ["I go to School.", "You are stupid."],
            ["I go to School.", "You are stupid."],
        ]
        references = [
            [["I am", "I am"], [None, "I am"]],
            [[None, "I am"]],
        ]
        print(f"Case II\n{_call_metric(predictions, references, tokenize_sentences, multi_references)}\n")

        # Case 3: tokenize_sentences = True, multi_references = False
        tokenize_sentences = True
        multi_references = False
        predictions = [
            None,
            "I go to School. You are stupid.",
        ]
        references = [
            "I am. I am.",
            "I am. I am.",
        ]
        print(f"Case III\n{_call_metric(predictions, references, tokenize_sentences, multi_references)}\n")

        # Case 4: tokenize_sentences = False, multi_references = False
        # This is taken care by the library itself
        tokenize_sentences = False
        multi_references = False
        predictions = [
            ["I go to School.", None],
            ["I go to School.", "You are stupid."],
        ]
        references = [
            ["I am.", "I am."],
            ["I am.", "I am."],
        ]
        print(f"Case IV\n{_call_metric(predictions, references, tokenize_sentences, multi_references)}\n")

    def test_empty_input(self):
        predictions = ["", ""]
        references = ["I go to School. You are stupid.", "I am"]
        scores = self.semf1_metric.compute(
            predictions=predictions,
            references=references,
        )
        print(scores)

        # # Test with Gibberish Cases
        # predictions = ["lth cgezawrxretxdr", "dsfgsdfhsdfh"]
        # references = ["dzfgzeWfnAfse", "dtjsrtzerZJSEWr"]
        # scores = self.semf1_metric.compute(
        #     predictions=predictions,
        #     references=references,
        # )
        # print(scores)


class TestCosineSimilarity(unittest.TestCase):

    def setUp(self):
        # Sample embeddings for testing
        self.pred_embeds = np.array([
            [1, 0, 0],
            [0, 1, 0],
            [0, 0, 1]
        ])
        self.ref_embeds = np.array([
            [1, 0, 0],
            [0, 1, 0],
            [0, 0, 1]
        ])

        self.pred_embeds_random = np.random.rand(3, 3)
        self.ref_embeds_random = np.random.rand(3, 3)

    def test_cosine_similarity_perfect_match(self):
        precision, recall = _compute_cosine_similarity(self.pred_embeds, self.ref_embeds)

        # Expected values are 1.0 for both precision and recall since embeddings are identical
        self.assertAlmostEqual(precision, 1.0, places=5)
        self.assertAlmostEqual(recall, 1.0, places=5)

    def _test_cosine_similarity_base(self, pred_embeds, ref_embeds):
        precision, recall = _compute_cosine_similarity(pred_embeds, ref_embeds)

        # Calculate expected precision and recall using sklearn's cosine similarity function
        cosine_scores = cosine_similarity(pred_embeds, ref_embeds)
        expected_precision = np.mean(np.max(cosine_scores, axis=-1)).item()
        expected_recall = np.mean(np.max(cosine_scores, axis=0)).item()

        self.assertAlmostEqual(precision, expected_precision, places=5)
        self.assertAlmostEqual(recall, expected_recall, places=5)

    def test_cosine_similarity_random(self):
        self._test_cosine_similarity_base(self.pred_embeds_random, self.ref_embeds_random)

    def test_cosine_similarity_different_shapes(self):
        pred_embeds_diff = np.random.rand(5, 3)
        ref_embeds_diff = np.random.rand(3, 3)
        self._test_cosine_similarity_base(pred_embeds_diff, ref_embeds_diff)


class TestValidateInputFormat(unittest.TestCase):
    def setUp(self):
        # Sample predictions and references for different scenarios where number of samples = 1
        # Note: Naming Convention: # When tokenize_sentences = True (i.e. input is untokenized) and vice-versa

        # When tokenize_sentences = True (untokenized input) and multi_references = False
        self.untokenized_single_reference_predictions = [
            "This is a prediction sentence 1. This is a prediction sentence 2."
        ]
        self.untokenized_single_reference_references = [
            "This is a reference sentence 1. This is a reference sentence 2."
        ]

        # When tokenize_sentences = False (tokenized input) and multi_references = False
        self.tokenized_single_reference_predictions = [
            ["This is a prediction sentence 1.", "This is a prediction sentence 2."]
        ]
        self.tokenized_single_reference_references = [
            ["This is a reference sentence 1.", "This is a reference sentence 2."]
        ]

        # When tokenize_sentences = True (untokenized input) and multi_references = True
        self.untokenized_multi_reference_predictions = [
            "This is a prediction sentence 1. This is a prediction sentence 2."
        ]
        self.untokenized_multi_reference_references = [
            [
                "This is a reference sentence 1. This is a reference sentence 2.",
                "Another reference sentence."
            ]
        ]

        # When tokenize_sentences = False (tokenized input) and multi_references = True
        self.tokenized_multi_reference_predictions = [
            ["This is a prediction sentence 1.", "This is a prediction sentence 2."]
        ]
        self.tokenized_multi_reference_references = [
            [
                ["This is a reference sentence 1.", "This is a reference sentence 2."],
                ["Another reference sentence."]
            ]
        ]

    def test_tokenized_sentences_true_multi_references_true(self):
        # Invalid format should raise an error
        with self.assertRaises(ValueError):
            _validate_input_format(
                True,
                True,
                self.tokenized_single_reference_predictions,
                self.tokenized_single_reference_references,
            )

        # Valid format should pass without error
        _validate_input_format(
            True,
            True,
            self.untokenized_multi_reference_predictions,
            self.untokenized_multi_reference_references,
        )

    def test_tokenized_sentences_false_multi_references_true(self):
        # Invalid format should raise an error
        with self.assertRaises(ValueError):
            _validate_input_format(
                False,
                True,
                self.untokenized_single_reference_predictions,
                self.untokenized_multi_reference_references,
            )

        # Valid format should pass without error
        _validate_input_format(
            False,
            True,
            self.tokenized_multi_reference_predictions,
            self.tokenized_multi_reference_references,
        )

    def test_tokenized_sentences_true_multi_references_false(self):
        # Invalid format should raise an error
        with self.assertRaises(ValueError):
            _validate_input_format(
                True,
                False,
                self.tokenized_single_reference_predictions,
                self.tokenized_single_reference_references,
            )

        # Valid format should pass without error
        _validate_input_format(
            True,
            False,
            self.untokenized_single_reference_predictions,
            self.untokenized_single_reference_references,
        )

    def test_tokenized_sentences_false_multi_references_false(self):
        # Invalid format should raise an error
        with self.assertRaises(ValueError):
            _validate_input_format(
                False,
                False,
                self.untokenized_single_reference_predictions,
                self.untokenized_single_reference_references,
            )

        # Valid format should pass without error
        _validate_input_format(
            False,
            False,
            self.tokenized_single_reference_predictions,
            self.tokenized_single_reference_references,
        )

    def test_mismatched_lengths(self):
        # Length mismatch should raise an error
        with self.assertRaises(ValueError):
            _validate_input_format(
                True,
                True,
                self.untokenized_single_reference_predictions,
                [self.untokenized_single_reference_predictions[0], self.untokenized_single_reference_predictions[0]],
            )


def run_tests():
    unittest.main(verbosity=2)

if __name__ == '__main__':
    run_tests()