nbansal commited on
Commit
90d2f63
·
1 Parent(s): f036197

Added initial setup for SEM-F1 metric

Browse files
Files changed (3) hide show
  1. README.md +51 -10
  2. requirements.txt +3 -1
  3. semf1.py +138 -43
README.md CHANGED
@@ -1,28 +1,49 @@
1
  ---
2
  title: SemF1
3
- datasets:
4
- -
5
  tags:
6
  - evaluate
7
  - metric
8
- description: "TODO: add a description here"
9
  sdk: gradio
10
  sdk_version: 3.19.1
11
  app_file: app.py
12
  pinned: false
 
 
 
 
 
 
 
13
  ---
14
 
15
  # Metric Card for SemF1
16
 
17
- ***Module Card Instructions:*** *Fill out the following subsections. Feel free to take a look at existing metric cards if you'd like examples.*
18
-
19
  ## Metric Description
20
- *Give a brief overview of this metric, including what task(s) it is usually used for, if any.*
 
 
21
 
22
  ## How to Use
23
- *Give general statement of how to use the metric*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
 
25
- *Provide simplest possible example for using the metric*
 
26
 
27
  ### Inputs
28
  *List all input arguments in the format below*
@@ -44,7 +65,27 @@ pinned: false
44
  *Note any known limitations or biases that the metric has, with links and references if possible.*
45
 
46
  ## Citation
47
- *Cite the source where this metric was introduced.*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
 
49
  ## Further References
50
- *Add any useful further references.*
 
 
1
  ---
2
  title: SemF1
 
 
3
  tags:
4
  - evaluate
5
  - metric
 
6
  sdk: gradio
7
  sdk_version: 3.19.1
8
  app_file: app.py
9
  pinned: false
10
+ description: >-
11
+ SEM-F1 metric leverages the pre-trained contextual embeddings and evaluates the model generated semantic overlap
12
+ summary with the reference overlap summary. It evaluates the semantic overlap summary at the sentence level and
13
+ computes precision, recall and F1 scores.
14
+
15
+ Refer to the paper `SEM-F1: an Automatic Way for Semantic Evaluation of Multi-Narrative Overlap Summaries at Scale`
16
+ for more details.
17
  ---
18
 
19
  # Metric Card for SemF1
20
 
 
 
21
  ## Metric Description
22
+ SEM-F1 metric leverages the pre-trained contextual embeddings and evaluates the model generated semantic overlap
23
+ summary with the reference overlap summary. It evaluates the semantic overlap summary at the sentence level and
24
+ computes precision, recall and F1 scores.
25
 
26
  ## How to Use
27
+ SEM-F1 takes 2 mandatory arguments:
28
+ `predictions`: (a list of system generated documents in the form of sentences i.e. List[List[str]]),
29
+ `references`: (a list of ground-truth documents in the form of sentences i.e. List[List[str]])
30
+
31
+ ```python
32
+ from evaluate import load
33
+ predictions = [
34
+ ["I go to School.", "You are stupid."],
35
+ ["I love adventure sports."],
36
+ ]
37
+ references = [
38
+ ["I go to School.", "You are stupid."],
39
+ ["I love adventure sports."],
40
+ ]
41
+ metric = load("semf1")
42
+ results = metric.compute(predictions=predictions, references=references)
43
+ ```
44
 
45
+ It also accepts multiple optional arguments:
46
+ TODO: List optional arguments
47
 
48
  ### Inputs
49
  *List all input arguments in the format below*
 
65
  *Note any known limitations or biases that the metric has, with links and references if possible.*
66
 
67
  ## Citation
68
+ ```bibtex
69
+ @inproceedings{bansal-etal-2022-sem,
70
+ title = "{SEM}-F1: an Automatic Way for Semantic Evaluation of Multi-Narrative Overlap Summaries at Scale",
71
+ author = "Bansal, Naman and
72
+ Akter, Mousumi and
73
+ Karmaker Santu, Shubhra Kanti",
74
+ editor = "Goldberg, Yoav and
75
+ Kozareva, Zornitsa and
76
+ Zhang, Yue",
77
+ booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
78
+ month = dec,
79
+ year = "2022",
80
+ address = "Abu Dhabi, United Arab Emirates",
81
+ publisher = "Association for Computational Linguistics",
82
+ url = "https://aclanthology.org/2022.emnlp-main.49",
83
+ doi = "10.18653/v1/2022.emnlp-main.49",
84
+ pages = "780--792",
85
+ abstract = "Recent work has introduced an important yet relatively under-explored NLP task called Semantic Overlap Summarization (SOS) that entails generating a summary from multiple alternative narratives which conveys the common information provided by those narratives. Previous work also published a benchmark dataset for this task by collecting 2,925 alternative narrative pairs from the web and manually annotating 411 different reference summaries by engaging human annotators. In this paper, we exclusively focus on the automated evaluation of the SOS task using the benchmark dataset. More specifically, we first use the popular ROUGE metric from text-summarization literature and conduct a systematic study to evaluate the SOS task. Our experiments discover that ROUGE is not suitable for this novel task and therefore, we propose a new sentence-level precision-recall style automated evaluation metric, called SEM-F1 (Semantic F1). It is inspired by the benefits of the sentence-wise annotation technique using overlap labels reported by the previous work. Our experiments show that the proposed SEM-F1 metric yields a higher correlation with human judgment and higher inter-rater agreement compared to the ROUGE metric.",
86
+ }
87
+ ```
88
 
89
  ## Further References
90
+ - [Paper](https://aclanthology.org/2022.emnlp-main.49/)
91
+ - [Presentation Slides]()
requirements.txt CHANGED
@@ -1 +1,3 @@
1
- git+https://github.com/huggingface/evaluate@main
 
 
 
1
+ git+https://github.com/huggingface/evaluate@main
2
+ scikit-learn
3
+ sentence-transformers
semf1.py CHANGED
@@ -11,58 +11,137 @@
11
  # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
  # See the License for the specific language governing permissions and
13
  # limitations under the License.
14
- """TODO: Add a description here."""
 
15
 
16
- import evaluate
17
- import datasets
18
 
 
 
 
 
 
 
 
 
 
 
19
 
20
- # TODO: Add BibTeX citation
21
  _CITATION = """\
22
- @InProceedings{huggingface:module,
23
- title = {A great new module},
24
- authors={huggingface, Inc.},
25
- year={2020}
 
 
 
 
 
 
 
 
 
 
 
 
 
26
  }
27
  """
28
 
29
- # TODO: Add description of the module here
30
  _DESCRIPTION = """\
31
- This new module is designed to solve this great ML task and is crafted with a lot of care.
 
 
32
  """
33
 
34
-
35
- # TODO: Add description of the arguments of the module here
36
  _KWARGS_DESCRIPTION = """
37
- Calculates how good are predictions given some references, using certain scores
 
38
  Args:
39
- predictions: list of predictions to score. Each predictions
40
- should be a string with tokens separated by spaces.
41
- references: list of reference for each prediction. Each
42
  reference should be a string with tokens separated by spaces.
 
 
 
 
 
43
  Returns:
44
  accuracy: description of the first score,
45
  another_score: description of the second score,
46
  Examples:
47
- Examples should be written in doctest format, and should illustrate how
48
- to use the function.
49
 
50
- >>> my_new_module = evaluate.load("my_new_module")
51
- >>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
52
- >>> print(results)
53
- {'accuracy': 1.0}
 
 
 
 
 
 
 
 
 
54
  """
55
 
56
- # TODO: Define external resources urls if needed
57
- BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58
 
59
 
60
  @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
61
  class SemF1(evaluate.Metric):
62
- """TODO: Short description of my evaluation module."""
 
 
 
 
63
 
64
  def _info(self):
65
- # TODO: Specifies the evaluate.EvaluationModuleInfo object
66
  return evaluate.MetricInfo(
67
  # This is the description that will appear on the modules page.
68
  module_type="metric",
@@ -71,25 +150,41 @@ class SemF1(evaluate.Metric):
71
  inputs_description=_KWARGS_DESCRIPTION,
72
  # This defines the format of each prediction and reference
73
  features=datasets.Features({
74
- 'predictions': datasets.Value('int64'),
75
- 'references': datasets.Value('int64'),
76
  }),
77
- # Homepage of the module for documentation
78
- homepage="http://module.homepage",
79
  # Additional links to the codebase or references
80
- codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
81
- reference_urls=["http://path.to.reference.url/new_module"]
82
  )
83
 
84
- def _download_and_prepare(self, dl_manager):
85
- """Optional: download external resources useful to compute the scores"""
86
- # TODO: Download external resources if needed
87
- pass
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88
 
89
- def _compute(self, predictions, references):
90
- """Returns the scores"""
91
- # TODO: Compute the different scores of the module
92
- accuracy = sum(i == j for i, j in zip(predictions, references)) / len(predictions)
93
- return {
94
- "accuracy": accuracy,
95
- }
 
11
  # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
  # See the License for the specific language governing permissions and
13
  # limitations under the License.
14
+ # TODO: Add test cases
15
+ """SEM-F1 metric"""
16
 
 
 
17
 
18
+ import abc
19
+ import sys
20
+ from typing import List, Optional, Tuple
21
+
22
+ import datasets
23
+ import evaluate
24
+ import numpy as np
25
+ from numpy.typing import NDArray
26
+ from sentence_transformers import SentenceTransformer
27
+ from sklearn.metrics.pairwise import cosine_similarity
28
 
 
29
  _CITATION = """\
30
+ @inproceedings{bansal-etal-2022-sem,
31
+ title = "{SEM}-F1: an Automatic Way for Semantic Evaluation of Multi-Narrative Overlap Summaries at Scale",
32
+ author = "Bansal, Naman and
33
+ Akter, Mousumi and
34
+ Karmaker Santu, Shubhra Kanti",
35
+ editor = "Goldberg, Yoav and
36
+ Kozareva, Zornitsa and
37
+ Zhang, Yue",
38
+ booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
39
+ month = dec,
40
+ year = "2022",
41
+ address = "Abu Dhabi, United Arab Emirates",
42
+ publisher = "Association for Computational Linguistics",
43
+ url = "https://aclanthology.org/2022.emnlp-main.49",
44
+ doi = "10.18653/v1/2022.emnlp-main.49",
45
+ pages = "780--792",
46
+ abstract = "Recent work has introduced an important yet relatively under-explored NLP task called Semantic Overlap Summarization (SOS) that entails generating a summary from multiple alternative narratives which conveys the common information provided by those narratives. Previous work also published a benchmark dataset for this task by collecting 2,925 alternative narrative pairs from the web and manually annotating 411 different reference summaries by engaging human annotators. In this paper, we exclusively focus on the automated evaluation of the SOS task using the benchmark dataset. More specifically, we first use the popular ROUGE metric from text-summarization literature and conduct a systematic study to evaluate the SOS task. Our experiments discover that ROUGE is not suitable for this novel task and therefore, we propose a new sentence-level precision-recall style automated evaluation metric, called SEM-F1 (Semantic F1). It is inspired by the benefits of the sentence-wise annotation technique using overlap labels reported by the previous work. Our experiments show that the proposed SEM-F1 metric yields a higher correlation with human judgment and higher inter-rater agreement compared to the ROUGE metric.",
47
  }
48
  """
49
 
 
50
  _DESCRIPTION = """\
51
+ SEM-F1 metric leverages the pre-trained contextual embeddings and evaluates the model generated
52
+ semantic overlap summary with the reference overlap summary. It evaluates the semantic overlap summary at the
53
+ sentence level and computes precision, recall and F1 scores.
54
  """
55
 
 
 
56
  _KWARGS_DESCRIPTION = """
57
+ SEM-F1 compares the system generated overlap summary with ground truth reference overlap.
58
+
59
  Args:
60
+ predictions: List[List(str)] - List of predictions where each prediction is a list of sentences.
61
+ references: List[List(str)] - List of references where each reference is a list of sentences.
 
62
  reference should be a string with tokens separated by spaces.
63
+ model_type: str - Model to use. [pv1, stsb, use]
64
+ Options:
65
+ pv1 - paraphrase-distilroberta-base-v1
66
+ stsb - stsb-roberta-large
67
+ use - Universal Sentence Encoder
68
  Returns:
69
  accuracy: description of the first score,
70
  another_score: description of the second score,
71
  Examples:
 
 
72
 
73
+ >>> import evaluate
74
+ >>> predictions = [
75
+ ["I go to School.", "You are stupid."],
76
+ ["I love adventure sports."],
77
+ ]
78
+ >>> references = [
79
+ ["I go to School.", "You are stupid."],
80
+ ["I love adventure sports."],
81
+ ]
82
+ >>> metric = evaluate.load("semf1")
83
+ >>> results = metric.compute(predictions=predictions, references=references)
84
+ >>> print([round(v, 2) for v in results["f1"]])
85
+ [0.77, 0.56]
86
  """
87
 
88
+
89
+ class Encoder(metaclass=abc.ABCMeta):
90
+ @abc.abstractmethod
91
+ def encode(self, prediction: List[str]) -> NDArray:
92
+ pass
93
+
94
+
95
+ class USE(Encoder):
96
+ def __init__(self):
97
+ pass
98
+
99
+ def encode(self, prediction: List[str]) -> NDArray:
100
+ pass
101
+
102
+
103
+ class SBertEncoder(Encoder):
104
+ def __init__(self, model_name: str):
105
+ self.model = SentenceTransformer(model_name)
106
+
107
+ def encode(self, prediction: List[str]) -> NDArray:
108
+ return self.model.encode(prediction)
109
+
110
+
111
+ def _get_encoder(model_name: str):
112
+ if model_name == "use":
113
+ return USE()
114
+ else:
115
+ return SBertEncoder(model_name)
116
+
117
+
118
+ def _compute_f1(p, r, eps=sys.float_info.epsilon):
119
+ '''
120
+ Computes F1 value
121
+ :param p: Precision Value
122
+ :param r: Recall Value
123
+ :return:
124
+ '''
125
+ f1 = 2 * p * r / (p + r + eps)
126
+ return f1
127
+
128
+
129
+ def _compute_cosine_similarity(pred_embeds: NDArray, ref_embeds: NDArray) -> Tuple[float, float]:
130
+ cosine_scores = cosine_similarity(pred_embeds, ref_embeds)
131
+ precision_per_sentence_sim = np.max(cosine_scores, axis=-1)
132
+ recall_per_sentence_sim = np.max(cosine_scores, axis=0)
133
+ return np.mean(precision_per_sentence_sim).item(), np.mean(recall_per_sentence_sim).item()
134
 
135
 
136
  @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
137
  class SemF1(evaluate.Metric):
138
+ _MODEL_TYPE_TO_NAME = {
139
+ "pv1": "paraphrase-distilroberta-base-v1",
140
+ "stsb": "stsb-roberta-large",
141
+ "use": "use",
142
+ }
143
 
144
  def _info(self):
 
145
  return evaluate.MetricInfo(
146
  # This is the description that will appear on the modules page.
147
  module_type="metric",
 
150
  inputs_description=_KWARGS_DESCRIPTION,
151
  # This defines the format of each prediction and reference
152
  features=datasets.Features({
153
+ 'predictions': datasets.Sequence(datasets.Value("string", id="sequence"), id="predictions"),
154
+ 'references': datasets.Sequence(datasets.Value("string", id="sequence"), id="references"),
155
  }),
156
+ # # Homepage of the module for documentation
 
157
  # Additional links to the codebase or references
158
+ reference_urls=["https://aclanthology.org/2022.emnlp-main.49/"]
 
159
  )
160
 
161
+ def _get_model_name(self, model_type: Optional[str] = None) -> str:
162
+ # TODO: make it work with USE as well
163
+ if model_type not in self._MODEL_TYPE_TO_NAME.keys():
164
+ raise ValueError(f"Provide a correct model_type.\n"
165
+ f"Options: {self._MODEL_TYPE_TO_NAME.keys()}\n"
166
+ f"Currently provided: {model_type}")
167
+
168
+ if model_type is None:
169
+ model_type = "pv1" # Change it to use
170
+
171
+ return self._MODEL_TYPE_TO_NAME[model_type]
172
+
173
+ def _compute(self, predictions, references, model_type: Optional[str] = None):
174
+ model_name = self._get_model_name(model_type)
175
+ encoder = _get_encoder(model_name)
176
+
177
+ precisions = [0] * len(predictions)
178
+ recalls = [0] * len(predictions)
179
+ f1_scores = [0] * len(predictions)
180
+
181
+ for idx, (preds, refs) in enumerate(zip(predictions, references)):
182
+ pred_embeddings = encoder.encode(preds)
183
+ ref_embeddings = encoder.encode(refs)
184
+ p, r = _compute_cosine_similarity(pred_embeddings, ref_embeddings)
185
+ f1 = _compute_f1(p, r)
186
+ precisions[idx] = p
187
+ recalls[idx] = r
188
+ f1_scores[idx] = f1
189
 
190
+ return {"precision": precisions, "recall": recalls, "f1": f1_scores}