nbansal commited on
Commit
dfd7508
·
1 Parent(s): 4c522b3

Updated the Readme minor modifications in description section in semf1.py

Browse files
Files changed (2) hide show
  1. README.md +30 -21
  2. semf1.py +4 -3
README.md CHANGED
@@ -16,15 +16,15 @@ description: >-
16
  for more details.
17
  ---
18
 
19
- # Metric Card for SemF1
20
 
21
  ## Metric Description
22
- SEM-F1 metric leverages the pre-trained contextual embeddings and evaluates the model generated semantic overlap
23
  summary with the reference overlap summary. It evaluates the semantic overlap summary at the sentence level and
24
  computes precision, recall and F1 scores.
25
 
26
  ## How to Use
27
- SEM-F1 takes 2 mandatory arguments:
28
  `predictions`: (a list of system generated documents in the form of sentences i.e. List[List[str]]),
29
  `references`: (a list of ground-truth documents in the form of sentences i.e. List[List[str]])
30
 
@@ -42,32 +42,41 @@ metric = load("semf1")
42
  results = metric.compute(predictions=predictions, references=references)
43
  ```
44
 
45
- It also accepts multiple optional arguments:
46
- TODO: List optional arguments
47
 
48
- ### Inputs
49
- TODO:
50
- *List all input arguments in the format below*
51
- - **input_field** *(type): Definition of input, with explanation if necessary. State any default value(s).*
 
 
 
 
 
 
 
 
 
52
 
53
  ### Output Values
54
 
55
- BERTScore outputs a dictionary with the following values:
 
 
 
 
56
 
57
- `precision`: The [precision](https://huggingface.co/metrics/precision) for each system summary, which ranges from 0.0 to 1.0.
58
 
59
- `recall`: The [recall](https://huggingface.co/metrics/recall) for each system summary, which ranges from 0.0 to 1.0.
60
 
61
- `f1`: The [F1 score](https://huggingface.co/metrics/f1) for each system summary, which ranges from 0.0 to 1.0.
62
 
63
- #### Values from Popular Papers
64
- *Give examples, preferrably with links to leaderboards or publications, to papers that have reported this metric, along with the values they have reported.*
65
 
66
- ### Examples
67
- *Give code examples of the metric being used. Try to include examples that clear up any potential ambiguity left from the metric description above. If possible, provide a range of examples that show both typical and atypical results, as well as examples where a variety of input parameters are passed.*
68
 
69
- ## Limitations and Bias
70
- *Note any known limitations or biases that the metric has, with links and references if possible.*
71
 
72
  ## Citation
73
  ```bibtex
@@ -92,6 +101,6 @@ BERTScore outputs a dictionary with the following values:
92
  ```
93
 
94
  ## Further References
95
- TODO: Add links to the slides and video
96
  - [Paper](https://aclanthology.org/2022.emnlp-main.49/)
97
- - [Presentation Slides]()
 
 
16
  for more details.
17
  ---
18
 
19
+ # Metric Card for Sem-F1
20
 
21
  ## Metric Description
22
+ Sem-F1 metric leverages the pre-trained contextual embeddings and evaluates the model generated semantic overlap
23
  summary with the reference overlap summary. It evaluates the semantic overlap summary at the sentence level and
24
  computes precision, recall and F1 scores.
25
 
26
  ## How to Use
27
+ Sem-F1 takes 2 mandatory arguments:
28
  `predictions`: (a list of system generated documents in the form of sentences i.e. List[List[str]]),
29
  `references`: (a list of ground-truth documents in the form of sentences i.e. List[List[str]])
30
 
 
42
  results = metric.compute(predictions=predictions, references=references)
43
  ```
44
 
45
+ It also accepts another optional arguments:
 
46
 
47
+ `model_type: Optional[str]`:
48
+ The model to use for encoding the sentences.
49
+ Options are:
50
+ [`pv1`](https://huggingface.co/sentence-transformers/paraphrase-distilroberta-base-v1),
51
+ [`stsb`](https://huggingface.co/sentence-transformers/stsb-roberta-large),
52
+ [`use`](https://huggingface.co/sentence-transformers/use-cmlm-multilingual).
53
+ The default value is `use`.
54
+
55
+ [//]: # (### Inputs)
56
+
57
+ [//]: # (*List all input arguments in the format below*)
58
+
59
+ [//]: # (- **input_field** *(type): Definition of input, with explanation if necessary. State any default value(s).*)
60
 
61
  ### Output Values
62
 
63
+ `precision`: The [precision](https://huggingface.co/metrics/precision) for each sentence from the `predictions` + `references` lists, which ranges from 0.0 to 1.0.
64
+
65
+ `recall`: The [recall](https://huggingface.co/metrics/recall) for each sentence from the `predictions` + `references` lists, which ranges from 0.0 to 1.0.
66
+
67
+ `f1`: The [F1 score](https://huggingface.co/metrics/f1) for each sentence from the `predictions` + `references` lists, which ranges from 0.0 to 1.0.
68
 
69
+ [//]: # (#### Values from Popular Papers)
70
 
71
+ [//]: # (*Give examples, preferrably with links to leaderboards or publications, to papers that have reported this metric, along with the values they have reported.*)
72
 
73
+ [//]: # (### Examples)
74
 
75
+ [//]: # (*Give code examples of the metric being used. Try to include examples that clear up any potential ambiguity left from the metric description above. If possible, provide a range of examples that show both typical and atypical results, as well as examples where a variety of input parameters are passed.*)
 
76
 
77
+ [//]: # (## Limitations and Bias)
 
78
 
79
+ [//]: # (*Note any known limitations or biases that the metric has, with links and references if possible.*)
 
80
 
81
  ## Citation
82
  ```bibtex
 
101
  ```
102
 
103
  ## Further References
 
104
  - [Paper](https://aclanthology.org/2022.emnlp-main.49/)
105
+ - [Presentation Slides](https://auburn.box.com/s/rs5p7sttaonbvljnq0i5tk7xxw0vonn3)
106
+ - [Video](https://auburn.box.com/s/c1bmb8c0a2emc9xhnjfalvqo2100yxvf)
semf1.py CHANGED
@@ -66,8 +66,10 @@ Args:
66
  stsb - stsb-roberta-large
67
  use - Universal Sentence Encoder
68
  Returns:
69
- accuracy: description of the first score,
70
- another_score: description of the second score,
 
 
71
  Examples:
72
 
73
  >>> import evaluate
@@ -85,7 +87,6 @@ Examples:
85
  [0.77, 0.56]
86
  """
87
 
88
- [["I go to School.", "You are stupid."]]
89
 
90
  class Encoder(metaclass=abc.ABCMeta):
91
  @abc.abstractmethod
 
66
  stsb - stsb-roberta-large
67
  use - Universal Sentence Encoder
68
  Returns:
69
+ precision: Precision.
70
+ recall: Recall.
71
+ f1: F1 score.
72
+
73
  Examples:
74
 
75
  >>> import evaluate
 
87
  [0.77, 0.56]
88
  """
89
 
 
90
 
91
  class Encoder(metaclass=abc.ABCMeta):
92
  @abc.abstractmethod