|
import json |
|
from tempfile import mktemp |
|
|
|
import argilla as rg |
|
from huggingface_hub import HfApi |
|
|
|
from defaults import REMOTE_CODE_PATHS, SEED_DATA_PATH |
|
|
|
|
|
hf_api = HfApi() |
|
|
|
with open("DATASET_README_BASE.md") as f: |
|
DATASET_README_BASE = f.read() |
|
|
|
|
|
def create_readme(domain_seed_data, project_name, domain): |
|
|
|
readme = DATASET_README_BASE |
|
readme += f"# {project_name}\n\n## Domain: {domain}" |
|
perspectives = domain_seed_data.get("perspectives") |
|
topics = domain_seed_data.get("topics") |
|
examples = domain_seed_data.get("examples") |
|
if perspectives: |
|
readme += "\n\n## Perspectives\n\n" |
|
for p in perspectives: |
|
readme += f"- {p}\n" |
|
if topics: |
|
readme += "\n\n## Topics\n\n" |
|
for t in topics: |
|
readme += f"- {t}\n" |
|
if examples: |
|
readme += "\n\n## Examples\n\n" |
|
for example in examples: |
|
readme += f"### {example['question']}\n\n{example['answer']}\n\n" |
|
temp_file = mktemp() |
|
|
|
with open(temp_file, "w") as f: |
|
f.write(readme) |
|
return temp_file |
|
|
|
|
|
def setup_dataset_on_hub(repo_id, hub_token): |
|
|
|
hf_api.create_repo( |
|
repo_id=repo_id, |
|
token=hub_token, |
|
repo_type="dataset", |
|
exist_ok=True, |
|
) |
|
|
|
|
|
def push_dataset_to_hub( |
|
domain_seed_data_path, |
|
project_name, |
|
domain, |
|
pipeline_path, |
|
hub_username, |
|
hub_token: str, |
|
): |
|
repo_id = f"{hub_username}/{project_name}" |
|
|
|
setup_dataset_on_hub(repo_id=repo_id, hub_token=hub_token) |
|
|
|
|
|
hf_api.upload_file( |
|
path_or_fileobj=domain_seed_data_path, |
|
path_in_repo="seed_data.json", |
|
token=hub_token, |
|
repo_id=repo_id, |
|
repo_type="dataset", |
|
) |
|
|
|
|
|
domain_seed_data = json.load(open(domain_seed_data_path)) |
|
hf_api.upload_file( |
|
path_or_fileobj=create_readme( |
|
domain_seed_data=domain_seed_data, project_name=project_name, domain=domain |
|
), |
|
path_in_repo="README.md", |
|
token=hub_token, |
|
repo_id=repo_id, |
|
repo_type="dataset", |
|
) |
|
|
|
|
|
def push_pipeline_to_hub( |
|
pipeline_path, |
|
hub_username, |
|
hub_token: str, |
|
project_name, |
|
): |
|
repo_id = f"{hub_username}/{project_name}" |
|
|
|
|
|
hf_api.upload_file( |
|
path_or_fileobj=pipeline_path, |
|
path_in_repo="pipeline.py", |
|
token=hub_token, |
|
repo_id=repo_id, |
|
repo_type="dataset", |
|
) |
|
|
|
for code_path in REMOTE_CODE_PATHS: |
|
hf_api.upload_file( |
|
path_or_fileobj=code_path, |
|
path_in_repo=code_path, |
|
token=hub_token, |
|
repo_id=repo_id, |
|
repo_type="dataset", |
|
) |
|
|
|
print(f"Dataset uploaded to {repo_id}") |
|
|
|
|
|
def pull_seed_data_from_repo(repo_id, hub_token): |
|
|
|
hf_api.hf_hub_download( |
|
repo_id=repo_id, token=hub_token, repo_type="dataset", filename=SEED_DATA_PATH |
|
) |
|
return json.load(open(SEED_DATA_PATH)) |
|
|
|
|
|
def push_argilla_dataset_to_hub( |
|
name: str, repo_id: str, url: str, api_key: str, workspace: str = "admin" |
|
): |
|
rg.init(api_url=url, api_key=api_key) |
|
feedback_dataset = rg.FeedbackDataset.from_argilla(name=name, workspace=workspace) |
|
local_dataset = feedback_dataset.pull() |
|
local_dataset.push_to_huggingface(repo_id=repo_id) |
|
|
|
|
|
def push_pipeline_params( |
|
pipeline_params, |
|
hub_username, |
|
hub_token: str, |
|
project_name, |
|
): |
|
repo_id = f"{hub_username}/{project_name}" |
|
temp_path = mktemp() |
|
with open(temp_path, "w") as f: |
|
json.dump(pipeline_params, f) |
|
|
|
hf_api.upload_file( |
|
path_or_fileobj=temp_path, |
|
path_in_repo="pipeline_params.json", |
|
token=hub_token, |
|
repo_id=repo_id, |
|
repo_type="dataset", |
|
) |
|
|
|
print(f"Pipeline params uploaded to {repo_id}") |
|
|