BruceLee1234
commited on
Commit
•
acca2c1
1
Parent(s):
9803328
Update app.py
Browse files
app.py
CHANGED
@@ -1,31 +1,51 @@
|
|
|
|
1 |
import torch
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
|
4 |
# Load the HelpingAI2.5-2B model
|
5 |
model = AutoModelForCausalLM.from_pretrained("OEvortex/HelpingAI2.5-2B")
|
6 |
-
# Load the tokenizer
|
7 |
tokenizer = AutoTokenizer.from_pretrained("OEvortex/HelpingAI2.5-2B")
|
8 |
|
9 |
-
#
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
chat
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
)
|
29 |
|
30 |
-
|
31 |
-
|
|
|
1 |
+
import gradio as gr
|
2 |
import torch
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
|
5 |
# Load the HelpingAI2.5-2B model
|
6 |
model = AutoModelForCausalLM.from_pretrained("OEvortex/HelpingAI2.5-2B")
|
|
|
7 |
tokenizer = AutoTokenizer.from_pretrained("OEvortex/HelpingAI2.5-2B")
|
8 |
|
9 |
+
# Move model to GPU (if available) or CPU
|
10 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
11 |
+
model.to(device)
|
12 |
+
|
13 |
+
# Define the function for generating responses
|
14 |
+
def generate_response(user_input):
|
15 |
+
# Define the chat input structure
|
16 |
+
chat = [
|
17 |
+
{ "role": "system", "content": "You are HelpingAI, an emotional AI. Always answer my questions in the HelpingAI style." },
|
18 |
+
{ "role": "user", "content": user_input }
|
19 |
+
]
|
20 |
+
|
21 |
+
chat_input = ""
|
22 |
+
for message in chat:
|
23 |
+
role = message["role"]
|
24 |
+
content = message["content"]
|
25 |
+
chat_input += f"{role}: {content}\n"
|
26 |
+
|
27 |
+
# Tokenize the input
|
28 |
+
inputs = tokenizer(chat_input, return_tensors="pt").to(device)
|
29 |
+
|
30 |
+
# Generate text
|
31 |
+
outputs = model.generate(
|
32 |
+
inputs["input_ids"],
|
33 |
+
max_new_tokens=256,
|
34 |
+
do_sample=True,
|
35 |
+
temperature=0.6,
|
36 |
+
top_p=0.9,
|
37 |
+
)
|
38 |
+
|
39 |
+
response = outputs[0][inputs["input_ids"].shape[-1]:]
|
40 |
+
return tokenizer.decode(response, skip_special_tokens=True)
|
41 |
+
|
42 |
+
# Create the Gradio interface
|
43 |
+
iface = gr.Interface(
|
44 |
+
fn=generate_response,
|
45 |
+
inputs="text",
|
46 |
+
outputs="text",
|
47 |
+
live=True
|
48 |
)
|
49 |
|
50 |
+
# Launch the Gradio app
|
51 |
+
iface.launch()
|