Spaces:
Sleeping
Sleeping
File size: 19,262 Bytes
d380b77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
import enum
from copy import deepcopy
import numpy as np
from skimage import img_as_ubyte
from skimage.transform import rescale, resize
try:
from detectron2 import model_zoo
from detectron2.config import get_cfg
from detectron2.engine import DefaultPredictor
DETECTRON_INSTALLED = True
except:
print("Detectron v2 is not installed")
DETECTRON_INSTALLED = False
from .countless.countless2d import zero_corrected_countless
class ObjectMask():
def __init__(self, mask):
self.height, self.width = mask.shape
(self.up, self.down), (self.left, self.right) = self._get_limits(mask)
self.mask = mask[self.up:self.down, self.left:self.right].copy()
@staticmethod
def _get_limits(mask):
def indicator_limits(indicator):
lower = indicator.argmax()
upper = len(indicator) - indicator[::-1].argmax()
return lower, upper
vertical_indicator = mask.any(axis=1)
vertical_limits = indicator_limits(vertical_indicator)
horizontal_indicator = mask.any(axis=0)
horizontal_limits = indicator_limits(horizontal_indicator)
return vertical_limits, horizontal_limits
def _clean(self):
self.up, self.down, self.left, self.right = 0, 0, 0, 0
self.mask = np.empty((0, 0))
def horizontal_flip(self, inplace=False):
if not inplace:
flipped = deepcopy(self)
return flipped.horizontal_flip(inplace=True)
self.mask = self.mask[:, ::-1]
return self
def vertical_flip(self, inplace=False):
if not inplace:
flipped = deepcopy(self)
return flipped.vertical_flip(inplace=True)
self.mask = self.mask[::-1, :]
return self
def image_center(self):
y_center = self.up + (self.down - self.up) / 2
x_center = self.left + (self.right - self.left) / 2
return y_center, x_center
def rescale(self, scaling_factor, inplace=False):
if not inplace:
scaled = deepcopy(self)
return scaled.rescale(scaling_factor, inplace=True)
scaled_mask = rescale(self.mask.astype(float), scaling_factor, order=0) > 0.5
(up, down), (left, right) = self._get_limits(scaled_mask)
self.mask = scaled_mask[up:down, left:right]
y_center, x_center = self.image_center()
mask_height, mask_width = self.mask.shape
self.up = int(round(y_center - mask_height / 2))
self.down = self.up + mask_height
self.left = int(round(x_center - mask_width / 2))
self.right = self.left + mask_width
return self
def crop_to_canvas(self, vertical=True, horizontal=True, inplace=False):
if not inplace:
cropped = deepcopy(self)
cropped.crop_to_canvas(vertical=vertical, horizontal=horizontal, inplace=True)
return cropped
if vertical:
if self.up >= self.height or self.down <= 0:
self._clean()
else:
cut_up, cut_down = max(-self.up, 0), max(self.down - self.height, 0)
if cut_up != 0:
self.mask = self.mask[cut_up:]
self.up = 0
if cut_down != 0:
self.mask = self.mask[:-cut_down]
self.down = self.height
if horizontal:
if self.left >= self.width or self.right <= 0:
self._clean()
else:
cut_left, cut_right = max(-self.left, 0), max(self.right - self.width, 0)
if cut_left != 0:
self.mask = self.mask[:, cut_left:]
self.left = 0
if cut_right != 0:
self.mask = self.mask[:, :-cut_right]
self.right = self.width
return self
def restore_full_mask(self, allow_crop=False):
cropped = self.crop_to_canvas(inplace=allow_crop)
mask = np.zeros((cropped.height, cropped.width), dtype=bool)
mask[cropped.up:cropped.down, cropped.left:cropped.right] = cropped.mask
return mask
def shift(self, vertical=0, horizontal=0, inplace=False):
if not inplace:
shifted = deepcopy(self)
return shifted.shift(vertical=vertical, horizontal=horizontal, inplace=True)
self.up += vertical
self.down += vertical
self.left += horizontal
self.right += horizontal
return self
def area(self):
return self.mask.sum()
class RigidnessMode(enum.Enum):
soft = 0
rigid = 1
class SegmentationMask:
def __init__(self, confidence_threshold=0.5, rigidness_mode=RigidnessMode.rigid,
max_object_area=0.3, min_mask_area=0.02, downsample_levels=6, num_variants_per_mask=4,
max_mask_intersection=0.5, max_foreground_coverage=0.5, max_foreground_intersection=0.5,
max_hidden_area=0.2, max_scale_change=0.25, horizontal_flip=True,
max_vertical_shift=0.1, position_shuffle=True):
"""
:param confidence_threshold: float; threshold for confidence of the panoptic segmentator to allow for
the instance.
:param rigidness_mode: RigidnessMode object
when soft, checks intersection only with the object from which the mask_object was produced
when rigid, checks intersection with any foreground class object
:param max_object_area: float; allowed upper bound for to be considered as mask_object.
:param min_mask_area: float; lower bound for mask to be considered valid
:param downsample_levels: int; defines width of the resized segmentation to obtain shifted masks;
:param num_variants_per_mask: int; maximal number of the masks for the same object;
:param max_mask_intersection: float; maximum allowed area fraction of intersection for 2 masks
produced by horizontal shift of the same mask_object; higher value -> more diversity
:param max_foreground_coverage: float; maximum allowed area fraction of intersection for foreground object to be
covered by mask; lower value -> less the objects are covered
:param max_foreground_intersection: float; maximum allowed area of intersection for the mask with foreground
object; lower value -> mask is more on the background than on the objects
:param max_hidden_area: upper bound on part of the object hidden by shifting object outside the screen area;
:param max_scale_change: allowed scale change for the mask_object;
:param horizontal_flip: if horizontal flips are allowed;
:param max_vertical_shift: amount of vertical movement allowed;
:param position_shuffle: shuffle
"""
assert DETECTRON_INSTALLED, 'Cannot use SegmentationMask without detectron2'
self.cfg = get_cfg()
self.cfg.merge_from_file(model_zoo.get_config_file("COCO-PanopticSegmentation/panoptic_fpn_R_101_3x.yaml"))
self.cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-PanopticSegmentation/panoptic_fpn_R_101_3x.yaml")
self.cfg.MODEL.PANOPTIC_FPN.COMBINE.INSTANCES_CONFIDENCE_THRESH = confidence_threshold
self.predictor = DefaultPredictor(self.cfg)
self.rigidness_mode = RigidnessMode(rigidness_mode)
self.max_object_area = max_object_area
self.min_mask_area = min_mask_area
self.downsample_levels = downsample_levels
self.num_variants_per_mask = num_variants_per_mask
self.max_mask_intersection = max_mask_intersection
self.max_foreground_coverage = max_foreground_coverage
self.max_foreground_intersection = max_foreground_intersection
self.max_hidden_area = max_hidden_area
self.position_shuffle = position_shuffle
self.max_scale_change = max_scale_change
self.horizontal_flip = horizontal_flip
self.max_vertical_shift = max_vertical_shift
def get_segmentation(self, img):
im = img_as_ubyte(img)
panoptic_seg, segment_info = self.predictor(im)["panoptic_seg"]
return panoptic_seg, segment_info
@staticmethod
def _is_power_of_two(n):
return (n != 0) and (n & (n-1) == 0)
def identify_candidates(self, panoptic_seg, segments_info):
potential_mask_ids = []
for segment in segments_info:
if not segment["isthing"]:
continue
mask = (panoptic_seg == segment["id"]).int().detach().cpu().numpy()
area = mask.sum().item() / np.prod(panoptic_seg.shape)
if area >= self.max_object_area:
continue
potential_mask_ids.append(segment["id"])
return potential_mask_ids
def downsample_mask(self, mask):
height, width = mask.shape
if not (self._is_power_of_two(height) and self._is_power_of_two(width)):
raise ValueError("Image sides are not power of 2.")
num_iterations = width.bit_length() - 1 - self.downsample_levels
if num_iterations < 0:
raise ValueError(f"Width is lower than 2^{self.downsample_levels}.")
if height.bit_length() - 1 < num_iterations:
raise ValueError("Height is too low to perform downsampling")
downsampled = mask
for _ in range(num_iterations):
downsampled = zero_corrected_countless(downsampled)
return downsampled
def _augmentation_params(self):
scaling_factor = np.random.uniform(1 - self.max_scale_change, 1 + self.max_scale_change)
if self.horizontal_flip:
horizontal_flip = bool(np.random.choice(2))
else:
horizontal_flip = False
vertical_shift = np.random.uniform(-self.max_vertical_shift, self.max_vertical_shift)
return {
"scaling_factor": scaling_factor,
"horizontal_flip": horizontal_flip,
"vertical_shift": vertical_shift
}
def _get_intersection(self, mask_array, mask_object):
intersection = mask_array[
mask_object.up:mask_object.down, mask_object.left:mask_object.right
] & mask_object.mask
return intersection
def _check_masks_intersection(self, aug_mask, total_mask_area, prev_masks):
for existing_mask in prev_masks:
intersection_area = self._get_intersection(existing_mask, aug_mask).sum()
intersection_existing = intersection_area / existing_mask.sum()
intersection_current = 1 - (aug_mask.area() - intersection_area) / total_mask_area
if (intersection_existing > self.max_mask_intersection) or \
(intersection_current > self.max_mask_intersection):
return False
return True
def _check_foreground_intersection(self, aug_mask, foreground):
for existing_mask in foreground:
intersection_area = self._get_intersection(existing_mask, aug_mask).sum()
intersection_existing = intersection_area / existing_mask.sum()
if intersection_existing > self.max_foreground_coverage:
return False
intersection_mask = intersection_area / aug_mask.area()
if intersection_mask > self.max_foreground_intersection:
return False
return True
def _move_mask(self, mask, foreground):
# Obtaining properties of the original mask_object:
orig_mask = ObjectMask(mask)
chosen_masks = []
chosen_parameters = []
# to fix the case when resizing gives mask_object consisting only of False
scaling_factor_lower_bound = 0.
for var_idx in range(self.num_variants_per_mask):
# Obtaining augmentation parameters and applying them to the downscaled mask_object
augmentation_params = self._augmentation_params()
augmentation_params["scaling_factor"] = min([
augmentation_params["scaling_factor"],
2 * min(orig_mask.up, orig_mask.height - orig_mask.down) / orig_mask.height + 1.,
2 * min(orig_mask.left, orig_mask.width - orig_mask.right) / orig_mask.width + 1.
])
augmentation_params["scaling_factor"] = max([
augmentation_params["scaling_factor"], scaling_factor_lower_bound
])
aug_mask = deepcopy(orig_mask)
aug_mask.rescale(augmentation_params["scaling_factor"], inplace=True)
if augmentation_params["horizontal_flip"]:
aug_mask.horizontal_flip(inplace=True)
total_aug_area = aug_mask.area()
if total_aug_area == 0:
scaling_factor_lower_bound = 1.
continue
# Fix if the element vertical shift is too strong and shown area is too small:
vertical_area = aug_mask.mask.sum(axis=1) / total_aug_area # share of area taken by rows
# number of rows which are allowed to be hidden from upper and lower parts of image respectively
max_hidden_up = np.searchsorted(vertical_area.cumsum(), self.max_hidden_area)
max_hidden_down = np.searchsorted(vertical_area[::-1].cumsum(), self.max_hidden_area)
# correcting vertical shift, so not too much area will be hidden
augmentation_params["vertical_shift"] = np.clip(
augmentation_params["vertical_shift"],
-(aug_mask.up + max_hidden_up) / aug_mask.height,
(aug_mask.height - aug_mask.down + max_hidden_down) / aug_mask.height
)
# Applying vertical shift:
vertical_shift = int(round(aug_mask.height * augmentation_params["vertical_shift"]))
aug_mask.shift(vertical=vertical_shift, inplace=True)
aug_mask.crop_to_canvas(vertical=True, horizontal=False, inplace=True)
# Choosing horizontal shift:
max_hidden_area = self.max_hidden_area - (1 - aug_mask.area() / total_aug_area)
horizontal_area = aug_mask.mask.sum(axis=0) / total_aug_area
max_hidden_left = np.searchsorted(horizontal_area.cumsum(), max_hidden_area)
max_hidden_right = np.searchsorted(horizontal_area[::-1].cumsum(), max_hidden_area)
allowed_shifts = np.arange(-max_hidden_left, aug_mask.width -
(aug_mask.right - aug_mask.left) + max_hidden_right + 1)
allowed_shifts = - (aug_mask.left - allowed_shifts)
if self.position_shuffle:
np.random.shuffle(allowed_shifts)
mask_is_found = False
for horizontal_shift in allowed_shifts:
aug_mask_left = deepcopy(aug_mask)
aug_mask_left.shift(horizontal=horizontal_shift, inplace=True)
aug_mask_left.crop_to_canvas(inplace=True)
prev_masks = [mask] + chosen_masks
is_mask_suitable = self._check_masks_intersection(aug_mask_left, total_aug_area, prev_masks) & \
self._check_foreground_intersection(aug_mask_left, foreground)
if is_mask_suitable:
aug_draw = aug_mask_left.restore_full_mask()
chosen_masks.append(aug_draw)
augmentation_params["horizontal_shift"] = horizontal_shift / aug_mask_left.width
chosen_parameters.append(augmentation_params)
mask_is_found = True
break
if not mask_is_found:
break
return chosen_parameters
def _prepare_mask(self, mask):
height, width = mask.shape
target_width = width if self._is_power_of_two(width) else (1 << width.bit_length())
target_height = height if self._is_power_of_two(height) else (1 << height.bit_length())
return resize(mask.astype('float32'), (target_height, target_width), order=0, mode='edge').round().astype('int32')
def get_masks(self, im, return_panoptic=False):
panoptic_seg, segments_info = self.get_segmentation(im)
potential_mask_ids = self.identify_candidates(panoptic_seg, segments_info)
panoptic_seg_scaled = self._prepare_mask(panoptic_seg.detach().cpu().numpy())
downsampled = self.downsample_mask(panoptic_seg_scaled)
scene_objects = []
for segment in segments_info:
if not segment["isthing"]:
continue
mask = downsampled == segment["id"]
if not np.any(mask):
continue
scene_objects.append(mask)
mask_set = []
for mask_id in potential_mask_ids:
mask = downsampled == mask_id
if not np.any(mask):
continue
if self.rigidness_mode is RigidnessMode.soft:
foreground = [mask]
elif self.rigidness_mode is RigidnessMode.rigid:
foreground = scene_objects
else:
raise ValueError(f'Unexpected rigidness_mode: {rigidness_mode}')
masks_params = self._move_mask(mask, foreground)
full_mask = ObjectMask((panoptic_seg == mask_id).detach().cpu().numpy())
for params in masks_params:
aug_mask = deepcopy(full_mask)
aug_mask.rescale(params["scaling_factor"], inplace=True)
if params["horizontal_flip"]:
aug_mask.horizontal_flip(inplace=True)
vertical_shift = int(round(aug_mask.height * params["vertical_shift"]))
horizontal_shift = int(round(aug_mask.width * params["horizontal_shift"]))
aug_mask.shift(vertical=vertical_shift, horizontal=horizontal_shift, inplace=True)
aug_mask = aug_mask.restore_full_mask().astype('uint8')
if aug_mask.mean() <= self.min_mask_area:
continue
mask_set.append(aug_mask)
if return_panoptic:
return mask_set, panoptic_seg.detach().cpu().numpy()
else:
return mask_set
def propose_random_square_crop(mask, min_overlap=0.5):
height, width = mask.shape
mask_ys, mask_xs = np.where(mask > 0.5) # mask==0 is known fragment and mask==1 is missing
if height < width:
crop_size = height
obj_left, obj_right = mask_xs.min(), mask_xs.max()
obj_width = obj_right - obj_left
left_border = max(0, min(width - crop_size - 1, obj_left + obj_width * min_overlap - crop_size))
right_border = max(left_border + 1, min(width - crop_size, obj_left + obj_width * min_overlap))
start_x = np.random.randint(left_border, right_border)
return start_x, 0, start_x + crop_size, height
else:
crop_size = width
obj_top, obj_bottom = mask_ys.min(), mask_ys.max()
obj_height = obj_bottom - obj_top
top_border = max(0, min(height - crop_size - 1, obj_top + obj_height * min_overlap - crop_size))
bottom_border = max(top_border + 1, min(height - crop_size, obj_top + obj_height * min_overlap))
start_y = np.random.randint(top_border, bottom_border)
return 0, start_y, width, start_y + crop_size
|