File size: 1,886 Bytes
5a3dfd3
0774187
 
5a3dfd3
 
 
 
 
 
b483613
 
a01ad06
5a3dfd3
 
 
7909c4f
5a3dfd3
 
 
 
 
 
 
 
 
7909c4f
8a6d741
7909c4f
5a3dfd3
b483613
 
a01ad06
71a5343
a01ad06
5a3dfd3
a01ad06
5a3dfd3
71a5343
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import os
os.system("gdown https://drive.google.com/uc?id=1-95IOJ-2y9BtmABiffIwndPqNZD_gLnV")
os.system("unzip big-lama.zip")
import cv2
import paddlehub as hub
import gradio as gr
import torch
from PIL import Image
import numpy as np
os.mkdir("data")
os.mkdir("dataout")
torch.hub.download_url_to_file('https://images.pexels.com/photos/103123/pexels-photo-103123.jpeg', 'person.jpeg')
model = hub.Module(name='U2Net')
def infer(img):
  img.save("./data/data.png")
  os.system("ls data")
  result = model.Segmentation(
      images=[cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)],
      paths=None,
      batch_size=1,
      input_size=320,
      output_dir='output',
      visualization=True)
  im = Image.fromarray(result[0]['mask'])
  im.save("./data/data_mask.png")
  os.system("ls data")
  os.system('python predict.py model.path=/home/user/app/big-lama/ indir=/home/user/app/data/ outdir=/home/user/app/dataout/ device=cpu')
  os.system("ls dataout")
  return "./dataout/data_mask.png"
inputs = gr.inputs.Image(type='pil', label="Original Image")
outputs = gr.outputs.Image(type="file",label="output")
title = "LaMa Image Inpainting"
description = "Gradio demo for LaMa: Resolution-robust Large Mask Inpainting with Fourier Convolutions. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below. Masks are generated by <a href='https://huggingface.co/spaces/akhaliq/U-2-Net' target='_blank'>U^2net</a>"
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2109.07161' target='_blank'>Resolution-robust Large Mask Inpainting with Fourier Convolutions</a> | <a href='https://github.com/saic-mdal/lama' target='_blank'>Github Repo</a></p>"
examples = [
  ['person.jpeg']
]
gr.Interface(infer, inputs, outputs, title=title, description=description, article=article, examples=examples, enable_queue=True).launch()