Spaces:
Sleeping
Sleeping
File size: 1,886 Bytes
5a3dfd3 0774187 5a3dfd3 b483613 a01ad06 5a3dfd3 7909c4f 5a3dfd3 7909c4f 8a6d741 7909c4f 5a3dfd3 b483613 a01ad06 71a5343 a01ad06 5a3dfd3 a01ad06 5a3dfd3 71a5343 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
import os
os.system("gdown https://drive.google.com/uc?id=1-95IOJ-2y9BtmABiffIwndPqNZD_gLnV")
os.system("unzip big-lama.zip")
import cv2
import paddlehub as hub
import gradio as gr
import torch
from PIL import Image
import numpy as np
os.mkdir("data")
os.mkdir("dataout")
torch.hub.download_url_to_file('https://images.pexels.com/photos/103123/pexels-photo-103123.jpeg', 'person.jpeg')
model = hub.Module(name='U2Net')
def infer(img):
img.save("./data/data.png")
os.system("ls data")
result = model.Segmentation(
images=[cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)],
paths=None,
batch_size=1,
input_size=320,
output_dir='output',
visualization=True)
im = Image.fromarray(result[0]['mask'])
im.save("./data/data_mask.png")
os.system("ls data")
os.system('python predict.py model.path=/home/user/app/big-lama/ indir=/home/user/app/data/ outdir=/home/user/app/dataout/ device=cpu')
os.system("ls dataout")
return "./dataout/data_mask.png"
inputs = gr.inputs.Image(type='pil', label="Original Image")
outputs = gr.outputs.Image(type="file",label="output")
title = "LaMa Image Inpainting"
description = "Gradio demo for LaMa: Resolution-robust Large Mask Inpainting with Fourier Convolutions. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below. Masks are generated by <a href='https://huggingface.co/spaces/akhaliq/U-2-Net' target='_blank'>U^2net</a>"
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2109.07161' target='_blank'>Resolution-robust Large Mask Inpainting with Fourier Convolutions</a> | <a href='https://github.com/saic-mdal/lama' target='_blank'>Github Repo</a></p>"
examples = [
['person.jpeg']
]
gr.Interface(infer, inputs, outputs, title=title, description=description, article=article, examples=examples, enable_queue=True).launch() |