Spaces:
Sleeping
Sleeping
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
class SSIM(torch.nn.Module): | |
"""SSIM. Modified from: | |
https://github.com/Po-Hsun-Su/pytorch-ssim/blob/master/pytorch_ssim/__init__.py | |
""" | |
def __init__(self, window_size=11, size_average=True): | |
super().__init__() | |
self.window_size = window_size | |
self.size_average = size_average | |
self.channel = 1 | |
self.register_buffer('window', self._create_window(window_size, self.channel)) | |
def forward(self, img1, img2): | |
assert len(img1.shape) == 4 | |
channel = img1.size()[1] | |
if channel == self.channel and self.window.data.type() == img1.data.type(): | |
window = self.window | |
else: | |
window = self._create_window(self.window_size, channel) | |
# window = window.to(img1.get_device()) | |
window = window.type_as(img1) | |
self.window = window | |
self.channel = channel | |
return self._ssim(img1, img2, window, self.window_size, channel, self.size_average) | |
def _gaussian(self, window_size, sigma): | |
gauss = torch.Tensor([ | |
np.exp(-(x - (window_size // 2)) ** 2 / float(2 * sigma ** 2)) for x in range(window_size) | |
]) | |
return gauss / gauss.sum() | |
def _create_window(self, window_size, channel): | |
_1D_window = self._gaussian(window_size, 1.5).unsqueeze(1) | |
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0) | |
return _2D_window.expand(channel, 1, window_size, window_size).contiguous() | |
def _ssim(self, img1, img2, window, window_size, channel, size_average=True): | |
mu1 = F.conv2d(img1, window, padding=(window_size // 2), groups=channel) | |
mu2 = F.conv2d(img2, window, padding=(window_size // 2), groups=channel) | |
mu1_sq = mu1.pow(2) | |
mu2_sq = mu2.pow(2) | |
mu1_mu2 = mu1 * mu2 | |
sigma1_sq = F.conv2d( | |
img1 * img1, window, padding=(window_size // 2), groups=channel) - mu1_sq | |
sigma2_sq = F.conv2d( | |
img2 * img2, window, padding=(window_size // 2), groups=channel) - mu2_sq | |
sigma12 = F.conv2d( | |
img1 * img2, window, padding=(window_size // 2), groups=channel) - mu1_mu2 | |
C1 = 0.01 ** 2 | |
C2 = 0.03 ** 2 | |
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / \ | |
((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)) | |
if size_average: | |
return ssim_map.mean() | |
return ssim_map.mean(1).mean(1).mean(1) | |
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): | |
return | |