LaMa-Demo-ONNX / bin /gen_mask_dataset.py
AK391
files
d380b77
raw
history blame
5.61 kB
#!/usr/bin/env python3
import glob
import os
import shutil
import traceback
import PIL.Image as Image
import numpy as np
from joblib import Parallel, delayed
from saicinpainting.evaluation.masks.mask import SegmentationMask, propose_random_square_crop
from saicinpainting.evaluation.utils import load_yaml, SmallMode
from saicinpainting.training.data.masks import MixedMaskGenerator
class MakeManyMasksWrapper:
def __init__(self, impl, variants_n=2):
self.impl = impl
self.variants_n = variants_n
def get_masks(self, img):
img = np.transpose(np.array(img), (2, 0, 1))
return [self.impl(img)[0] for _ in range(self.variants_n)]
def process_images(src_images, indir, outdir, config):
if config.generator_kind == 'segmentation':
mask_generator = SegmentationMask(**config.mask_generator_kwargs)
elif config.generator_kind == 'random':
variants_n = config.mask_generator_kwargs.pop('variants_n', 2)
mask_generator = MakeManyMasksWrapper(MixedMaskGenerator(**config.mask_generator_kwargs),
variants_n=variants_n)
else:
raise ValueError(f'Unexpected generator kind: {config.generator_kind}')
max_tamper_area = config.get('max_tamper_area', 1)
for infile in src_images:
try:
file_relpath = infile[len(indir):]
img_outpath = os.path.join(outdir, file_relpath)
os.makedirs(os.path.dirname(img_outpath), exist_ok=True)
image = Image.open(infile).convert('RGB')
# scale input image to output resolution and filter smaller images
if min(image.size) < config.cropping.out_min_size:
handle_small_mode = SmallMode(config.cropping.handle_small_mode)
if handle_small_mode == SmallMode.DROP:
continue
elif handle_small_mode == SmallMode.UPSCALE:
factor = config.cropping.out_min_size / min(image.size)
out_size = (np.array(image.size) * factor).round().astype('uint32')
image = image.resize(out_size, resample=Image.BICUBIC)
else:
factor = config.cropping.out_min_size / min(image.size)
out_size = (np.array(image.size) * factor).round().astype('uint32')
image = image.resize(out_size, resample=Image.BICUBIC)
# generate and select masks
src_masks = mask_generator.get_masks(image)
filtered_image_mask_pairs = []
for cur_mask in src_masks:
if config.cropping.out_square_crop:
(crop_left,
crop_top,
crop_right,
crop_bottom) = propose_random_square_crop(cur_mask,
min_overlap=config.cropping.crop_min_overlap)
cur_mask = cur_mask[crop_top:crop_bottom, crop_left:crop_right]
cur_image = image.copy().crop((crop_left, crop_top, crop_right, crop_bottom))
else:
cur_image = image
if len(np.unique(cur_mask)) == 0 or cur_mask.mean() > max_tamper_area:
continue
filtered_image_mask_pairs.append((cur_image, cur_mask))
mask_indices = np.random.choice(len(filtered_image_mask_pairs),
size=min(len(filtered_image_mask_pairs), config.max_masks_per_image),
replace=False)
# crop masks; save masks together with input image
mask_basename = os.path.join(outdir, os.path.splitext(file_relpath)[0])
for i, idx in enumerate(mask_indices):
cur_image, cur_mask = filtered_image_mask_pairs[idx]
cur_basename = mask_basename + f'_crop{i:03d}'
Image.fromarray(np.clip(cur_mask * 255, 0, 255).astype('uint8'),
mode='L').save(cur_basename + f'_mask{i:03d}.png')
cur_image.save(cur_basename + '.png')
except KeyboardInterrupt:
return
except Exception as ex:
print(f'Could not make masks for {infile} due to {ex}:\n{traceback.format_exc()}')
def main(args):
if not args.indir.endswith('/'):
args.indir += '/'
os.makedirs(args.outdir, exist_ok=True)
config = load_yaml(args.config)
in_files = list(glob.glob(os.path.join(args.indir, '**', f'*.{args.ext}'), recursive=True))
if args.n_jobs == 0:
process_images(in_files, args.indir, args.outdir, config)
else:
in_files_n = len(in_files)
chunk_size = in_files_n // args.n_jobs + (1 if in_files_n % args.n_jobs > 0 else 0)
Parallel(n_jobs=args.n_jobs)(
delayed(process_images)(in_files[start:start+chunk_size], args.indir, args.outdir, config)
for start in range(0, len(in_files), chunk_size)
)
if __name__ == '__main__':
import argparse
aparser = argparse.ArgumentParser()
aparser.add_argument('config', type=str, help='Path to config for dataset generation')
aparser.add_argument('indir', type=str, help='Path to folder with images')
aparser.add_argument('outdir', type=str, help='Path to folder to store aligned images and masks to')
aparser.add_argument('--n-jobs', type=int, default=0, help='How many processes to use')
aparser.add_argument('--ext', type=str, default='jpg', help='Input image extension')
main(aparser.parse_args())