Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
import torchvision.models as models | |
class PerceptualLoss(nn.Module): | |
r""" | |
Perceptual loss, VGG-based | |
https://arxiv.org/abs/1603.08155 | |
https://github.com/dxyang/StyleTransfer/blob/master/utils.py | |
""" | |
def __init__(self, weights=[1.0, 1.0, 1.0, 1.0, 1.0]): | |
super(PerceptualLoss, self).__init__() | |
self.add_module('vgg', VGG19()) | |
self.criterion = torch.nn.L1Loss() | |
self.weights = weights | |
def __call__(self, x, y): | |
# Compute features | |
x_vgg, y_vgg = self.vgg(x), self.vgg(y) | |
content_loss = 0.0 | |
content_loss += self.weights[0] * self.criterion(x_vgg['relu1_1'], y_vgg['relu1_1']) | |
content_loss += self.weights[1] * self.criterion(x_vgg['relu2_1'], y_vgg['relu2_1']) | |
content_loss += self.weights[2] * self.criterion(x_vgg['relu3_1'], y_vgg['relu3_1']) | |
content_loss += self.weights[3] * self.criterion(x_vgg['relu4_1'], y_vgg['relu4_1']) | |
content_loss += self.weights[4] * self.criterion(x_vgg['relu5_1'], y_vgg['relu5_1']) | |
return content_loss | |
class VGG19(torch.nn.Module): | |
def __init__(self): | |
super(VGG19, self).__init__() | |
features = models.vgg19(pretrained=True).features | |
self.relu1_1 = torch.nn.Sequential() | |
self.relu1_2 = torch.nn.Sequential() | |
self.relu2_1 = torch.nn.Sequential() | |
self.relu2_2 = torch.nn.Sequential() | |
self.relu3_1 = torch.nn.Sequential() | |
self.relu3_2 = torch.nn.Sequential() | |
self.relu3_3 = torch.nn.Sequential() | |
self.relu3_4 = torch.nn.Sequential() | |
self.relu4_1 = torch.nn.Sequential() | |
self.relu4_2 = torch.nn.Sequential() | |
self.relu4_3 = torch.nn.Sequential() | |
self.relu4_4 = torch.nn.Sequential() | |
self.relu5_1 = torch.nn.Sequential() | |
self.relu5_2 = torch.nn.Sequential() | |
self.relu5_3 = torch.nn.Sequential() | |
self.relu5_4 = torch.nn.Sequential() | |
for x in range(2): | |
self.relu1_1.add_module(str(x), features[x]) | |
for x in range(2, 4): | |
self.relu1_2.add_module(str(x), features[x]) | |
for x in range(4, 7): | |
self.relu2_1.add_module(str(x), features[x]) | |
for x in range(7, 9): | |
self.relu2_2.add_module(str(x), features[x]) | |
for x in range(9, 12): | |
self.relu3_1.add_module(str(x), features[x]) | |
for x in range(12, 14): | |
self.relu3_2.add_module(str(x), features[x]) | |
for x in range(14, 16): | |
self.relu3_2.add_module(str(x), features[x]) | |
for x in range(16, 18): | |
self.relu3_4.add_module(str(x), features[x]) | |
for x in range(18, 21): | |
self.relu4_1.add_module(str(x), features[x]) | |
for x in range(21, 23): | |
self.relu4_2.add_module(str(x), features[x]) | |
for x in range(23, 25): | |
self.relu4_3.add_module(str(x), features[x]) | |
for x in range(25, 27): | |
self.relu4_4.add_module(str(x), features[x]) | |
for x in range(27, 30): | |
self.relu5_1.add_module(str(x), features[x]) | |
for x in range(30, 32): | |
self.relu5_2.add_module(str(x), features[x]) | |
for x in range(32, 34): | |
self.relu5_3.add_module(str(x), features[x]) | |
for x in range(34, 36): | |
self.relu5_4.add_module(str(x), features[x]) | |
# don't need the gradients, just want the features | |
for param in self.parameters(): | |
param.requires_grad = False | |
def forward(self, x): | |
relu1_1 = self.relu1_1(x) | |
relu1_2 = self.relu1_2(relu1_1) | |
relu2_1 = self.relu2_1(relu1_2) | |
relu2_2 = self.relu2_2(relu2_1) | |
relu3_1 = self.relu3_1(relu2_2) | |
relu3_2 = self.relu3_2(relu3_1) | |
relu3_3 = self.relu3_3(relu3_2) | |
relu3_4 = self.relu3_4(relu3_3) | |
relu4_1 = self.relu4_1(relu3_4) | |
relu4_2 = self.relu4_2(relu4_1) | |
relu4_3 = self.relu4_3(relu4_2) | |
relu4_4 = self.relu4_4(relu4_3) | |
relu5_1 = self.relu5_1(relu4_4) | |
relu5_2 = self.relu5_2(relu5_1) | |
relu5_3 = self.relu5_3(relu5_2) | |
relu5_4 = self.relu5_4(relu5_3) | |
out = { | |
'relu1_1': relu1_1, | |
'relu1_2': relu1_2, | |
'relu2_1': relu2_1, | |
'relu2_2': relu2_2, | |
'relu3_1': relu3_1, | |
'relu3_2': relu3_2, | |
'relu3_3': relu3_3, | |
'relu3_4': relu3_4, | |
'relu4_1': relu4_1, | |
'relu4_2': relu4_2, | |
'relu4_3': relu4_3, | |
'relu4_4': relu4_4, | |
'relu5_1': relu5_1, | |
'relu5_2': relu5_2, | |
'relu5_3': relu5_3, | |
'relu5_4': relu5_4, | |
} | |
return out | |