Spaces:
Sleeping
Sleeping
import glob | |
import os | |
import cv2 | |
import PIL.Image as Image | |
import numpy as np | |
from torch.utils.data import Dataset | |
import torch.nn.functional as F | |
def load_image(fname, mode='RGB', return_orig=False): | |
img = np.array(Image.open(fname).convert(mode)) | |
if img.ndim == 3: | |
img = np.transpose(img, (2, 0, 1)) | |
out_img = img.astype('float32') / 255 | |
if return_orig: | |
return out_img, img | |
else: | |
return out_img | |
def ceil_modulo(x, mod): | |
if x % mod == 0: | |
return x | |
return (x // mod + 1) * mod | |
def pad_img_to_modulo(img, mod): | |
channels, height, width = img.shape | |
out_height = ceil_modulo(height, mod) | |
out_width = ceil_modulo(width, mod) | |
return np.pad(img, ((0, 0), (0, out_height - height), (0, out_width - width)), mode='symmetric') | |
def pad_tensor_to_modulo(img, mod): | |
batch_size, channels, height, width = img.shape | |
out_height = ceil_modulo(height, mod) | |
out_width = ceil_modulo(width, mod) | |
return F.pad(img, pad=(0, out_width - width, 0, out_height - height), mode='reflect') | |
def scale_image(img, factor, interpolation=cv2.INTER_AREA): | |
if img.shape[0] == 1: | |
img = img[0] | |
else: | |
img = np.transpose(img, (1, 2, 0)) | |
img = cv2.resize(img, dsize=None, fx=factor, fy=factor, interpolation=interpolation) | |
if img.ndim == 2: | |
img = img[None, ...] | |
else: | |
img = np.transpose(img, (2, 0, 1)) | |
return img | |
class InpaintingDataset(Dataset): | |
def __init__(self, datadir, img_suffix='.jpg', pad_out_to_modulo=None, scale_factor=None): | |
self.datadir = datadir | |
self.mask_filenames = sorted(list(glob.glob(os.path.join(self.datadir, '**', '*mask*.png'), recursive=True))) | |
self.img_filenames = [fname.rsplit('_mask', 1)[0] + img_suffix for fname in self.mask_filenames] | |
self.pad_out_to_modulo = pad_out_to_modulo | |
self.scale_factor = scale_factor | |
def __len__(self): | |
return len(self.mask_filenames) | |
def __getitem__(self, i): | |
image = load_image(self.img_filenames[i], mode='RGB') | |
mask = load_image(self.mask_filenames[i], mode='L') | |
result = dict(image=image, mask=mask[None, ...]) | |
if self.scale_factor is not None: | |
result['image'] = scale_image(result['image'], self.scale_factor) | |
result['mask'] = scale_image(result['mask'], self.scale_factor, interpolation=cv2.INTER_NEAREST) | |
if self.pad_out_to_modulo is not None and self.pad_out_to_modulo > 1: | |
result['image'] = pad_img_to_modulo(result['image'], self.pad_out_to_modulo) | |
result['mask'] = pad_img_to_modulo(result['mask'], self.pad_out_to_modulo) | |
return result | |
class OurInpaintingDataset(Dataset): | |
def __init__(self, datadir, img_suffix='.jpg', pad_out_to_modulo=None, scale_factor=None): | |
self.datadir = datadir | |
self.mask_filenames = sorted(list(glob.glob(os.path.join(self.datadir, 'mask', '**', '*mask*.png'), recursive=True))) | |
self.img_filenames = [os.path.join(self.datadir, 'img', os.path.basename(fname.rsplit('-', 1)[0].rsplit('_', 1)[0]) + '.png') for fname in self.mask_filenames] | |
self.pad_out_to_modulo = pad_out_to_modulo | |
self.scale_factor = scale_factor | |
def __len__(self): | |
return len(self.mask_filenames) | |
def __getitem__(self, i): | |
result = dict(image=load_image(self.img_filenames[i], mode='RGB'), | |
mask=load_image(self.mask_filenames[i], mode='L')[None, ...]) | |
if self.scale_factor is not None: | |
result['image'] = scale_image(result['image'], self.scale_factor) | |
result['mask'] = scale_image(result['mask'], self.scale_factor) | |
if self.pad_out_to_modulo is not None and self.pad_out_to_modulo > 1: | |
result['image'] = pad_img_to_modulo(result['image'], self.pad_out_to_modulo) | |
result['mask'] = pad_img_to_modulo(result['mask'], self.pad_out_to_modulo) | |
return result | |
class PrecomputedInpaintingResultsDataset(InpaintingDataset): | |
def __init__(self, datadir, predictdir, inpainted_suffix='_inpainted.jpg', **kwargs): | |
super().__init__(datadir, **kwargs) | |
if not datadir.endswith('/'): | |
datadir += '/' | |
self.predictdir = predictdir | |
self.pred_filenames = [os.path.join(predictdir, os.path.splitext(fname[len(datadir):])[0] + inpainted_suffix) | |
for fname in self.mask_filenames] | |
def __getitem__(self, i): | |
result = super().__getitem__(i) | |
result['inpainted'] = load_image(self.pred_filenames[i]) | |
if self.pad_out_to_modulo is not None and self.pad_out_to_modulo > 1: | |
result['inpainted'] = pad_img_to_modulo(result['inpainted'], self.pad_out_to_modulo) | |
return result | |
class OurPrecomputedInpaintingResultsDataset(OurInpaintingDataset): | |
def __init__(self, datadir, predictdir, inpainted_suffix="png", **kwargs): | |
super().__init__(datadir, **kwargs) | |
if not datadir.endswith('/'): | |
datadir += '/' | |
self.predictdir = predictdir | |
self.pred_filenames = [os.path.join(predictdir, os.path.basename(os.path.splitext(fname)[0]) + f'_inpainted.{inpainted_suffix}') | |
for fname in self.mask_filenames] | |
# self.pred_filenames = [os.path.join(predictdir, os.path.splitext(fname[len(datadir):])[0] + inpainted_suffix) | |
# for fname in self.mask_filenames] | |
def __getitem__(self, i): | |
result = super().__getitem__(i) | |
result['inpainted'] = self.file_loader(self.pred_filenames[i]) | |
if self.pad_out_to_modulo is not None and self.pad_out_to_modulo > 1: | |
result['inpainted'] = pad_img_to_modulo(result['inpainted'], self.pad_out_to_modulo) | |
return result | |
class InpaintingEvalOnlineDataset(Dataset): | |
def __init__(self, indir, mask_generator, img_suffix='.jpg', pad_out_to_modulo=None, scale_factor=None, **kwargs): | |
self.indir = indir | |
self.mask_generator = mask_generator | |
self.img_filenames = sorted(list(glob.glob(os.path.join(self.indir, '**', f'*{img_suffix}' ), recursive=True))) | |
self.pad_out_to_modulo = pad_out_to_modulo | |
self.scale_factor = scale_factor | |
def __len__(self): | |
return len(self.img_filenames) | |
def __getitem__(self, i): | |
img, raw_image = load_image(self.img_filenames[i], mode='RGB', return_orig=True) | |
mask = self.mask_generator(img, raw_image=raw_image) | |
result = dict(image=img, mask=mask) | |
if self.scale_factor is not None: | |
result['image'] = scale_image(result['image'], self.scale_factor) | |
result['mask'] = scale_image(result['mask'], self.scale_factor, interpolation=cv2.INTER_NEAREST) | |
if self.pad_out_to_modulo is not None and self.pad_out_to_modulo > 1: | |
result['image'] = pad_img_to_modulo(result['image'], self.pad_out_to_modulo) | |
result['mask'] = pad_img_to_modulo(result['mask'], self.pad_out_to_modulo) | |
return result |