Spaces:
Sleeping
Sleeping
Ahsen Khaliq
commited on
Commit
•
03898c7
1
Parent(s):
19dac07
Update app.py
Browse files
app.py
CHANGED
@@ -10,25 +10,28 @@ import numpy as np
|
|
10 |
os.mkdir("data")
|
11 |
os.mkdir("dataout")
|
12 |
model = hub.Module(name='U2Net')
|
13 |
-
def infer(img):
|
14 |
basewidth = 600
|
15 |
wpercent = (basewidth/float(img.size[0]))
|
16 |
hsize = int((float(img.size[1])*float(wpercent)))
|
17 |
img = img.resize((basewidth,hsize), Image.ANTIALIAS)
|
18 |
img.save("./data/data.png")
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
27 |
im.save("./data/data_mask.png")
|
28 |
os.system('python predict.py model.path=/home/user/app/big-lama/ indir=/home/user/app/data/ outdir=/home/user/app/dataout/ device=cpu')
|
29 |
return "./dataout/data_mask.png",im
|
30 |
-
inputs = gr.inputs.Image(type='pil', label="Original Image")
|
31 |
-
outputs = [gr.outputs.Image(type="file",label="output"),gr.outputs.Image(type="pil",label="Mask
|
32 |
title = "LaMa Image Inpainting"
|
33 |
description = "Gradio demo for LaMa: Resolution-robust Large Mask Inpainting with Fourier Convolutions. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below. Masks are generated by U^2net"
|
34 |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2109.07161' target='_blank'>Resolution-robust Large Mask Inpainting with Fourier Convolutions</a> | <a href='https://github.com/saic-mdal/lama' target='_blank'>Github Repo</a></p>"
|
|
|
10 |
os.mkdir("data")
|
11 |
os.mkdir("dataout")
|
12 |
model = hub.Module(name='U2Net')
|
13 |
+
def infer(img,mask,option):
|
14 |
basewidth = 600
|
15 |
wpercent = (basewidth/float(img.size[0]))
|
16 |
hsize = int((float(img.size[1])*float(wpercent)))
|
17 |
img = img.resize((basewidth,hsize), Image.ANTIALIAS)
|
18 |
img.save("./data/data.png")
|
19 |
+
if option == "automatic (U2net)"
|
20 |
+
result = model.Segmentation(
|
21 |
+
images=[cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)],
|
22 |
+
paths=None,
|
23 |
+
batch_size=1,
|
24 |
+
input_size=320,
|
25 |
+
output_dir='output',
|
26 |
+
visualization=True)
|
27 |
+
im = Image.fromarray(result[0]['mask'])
|
28 |
+
else:
|
29 |
+
im = mask
|
30 |
im.save("./data/data_mask.png")
|
31 |
os.system('python predict.py model.path=/home/user/app/big-lama/ indir=/home/user/app/data/ outdir=/home/user/app/dataout/ device=cpu')
|
32 |
return "./dataout/data_mask.png",im
|
33 |
+
inputs = [gr.inputs.Image(type='pil', label="Original Image"),gr.inputs.Image(type='pil',source="canvas", label="Mask",optional=True),gr.inputs.Radio(choices=["automatic (U2net)","manual"], type="value", default="manual", label="Masking option")]
|
34 |
+
outputs = [gr.outputs.Image(type="file",label="output"),gr.outputs.Image(type="pil",label="Mask")]
|
35 |
title = "LaMa Image Inpainting"
|
36 |
description = "Gradio demo for LaMa: Resolution-robust Large Mask Inpainting with Fourier Convolutions. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below. Masks are generated by U^2net"
|
37 |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2109.07161' target='_blank'>Resolution-robust Large Mask Inpainting with Fourier Convolutions</a> | <a href='https://github.com/saic-mdal/lama' target='_blank'>Github Repo</a></p>"
|