Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,7 @@ import argparse
|
|
3 |
import os
|
4 |
import time
|
5 |
from os import path
|
|
|
6 |
|
7 |
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
|
8 |
os.environ["TRANSFORMERS_CACHE"] = cache_path
|
@@ -42,41 +43,48 @@ with gr.Blocks() as demo:
|
|
42 |
with gr.Column():
|
43 |
with gr.Row():
|
44 |
with gr.Column():
|
|
|
|
|
|
|
45 |
num_images = gr.Slider(label="Number of Images", minimum=1, maximum=8, step=1, value=4, interactive=True)
|
46 |
steps = gr.Slider(label="Inference Steps", minimum=1, maximum=8, step=1, value=1, interactive=True)
|
|
|
47 |
eta = gr.Number(label="Eta (Corresponds to parameter eta (η) in the DDIM paper, i.e. 0.0 eqauls DDIM, 1.0 equals LCM)", value=1., interactive=True)
|
48 |
controlnet_scale = gr.Number(label="ControlNet Conditioning Scale", value=1.0, interactive=True)
|
49 |
-
prompt = gr.Text(label="Prompt", value="a photo of a cat", interactive=True)
|
50 |
seed = gr.Number(label="Seed", value=3413, interactive=True)
|
51 |
-
scribble = gr.ImageEditor(height=768, width=768, type="pil")
|
52 |
btn = gr.Button(value="run")
|
|
|
53 |
with gr.Column():
|
54 |
-
output = gr.Gallery(height=768)
|
|
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
59 |
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.float16), timer("inference"):
|
60 |
-
|
61 |
prompt=[prompt]*num_images,
|
62 |
-
image=[scribble['composite']
|
63 |
generator=torch.Generator().manual_seed(int(seed)),
|
64 |
num_inference_steps=steps,
|
65 |
guidance_scale=0.,
|
66 |
eta=eta,
|
67 |
-
controlnet_conditioning_scale=float(controlnet_scale)
|
68 |
).images
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
-
|
71 |
|
72 |
-
|
73 |
-
|
|
|
74 |
|
75 |
-
|
76 |
|
77 |
if __name__ == "__main__":
|
78 |
-
# parser = argparse.ArgumentParser()
|
79 |
-
# parser.add_argument("--port", default=7891, type=int)
|
80 |
-
# args = parser.parse_args()
|
81 |
-
# demo.launch(server_name="0.0.0.0", server_port=args.port)
|
82 |
demo.launch()
|
|
|
3 |
import os
|
4 |
import time
|
5 |
from os import path
|
6 |
+
from PIL import ImageOps
|
7 |
|
8 |
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
|
9 |
os.environ["TRANSFORMERS_CACHE"] = cache_path
|
|
|
43 |
with gr.Column():
|
44 |
with gr.Row():
|
45 |
with gr.Column():
|
46 |
+
# scribble = gr.Image(source="canvas", tool="color-sketch", shape=(512, 512), height=768, width=768, type="pil")
|
47 |
+
scribble = gr.ImageEditor(type="pil", image_mode="L", crop_size=(512, 512), sources=(), brush=gr.Brush(color_mode="fixed", colors=["#FFFFFF"]))
|
48 |
+
# scribble_out = gr.Image(height=384, width=384)
|
49 |
num_images = gr.Slider(label="Number of Images", minimum=1, maximum=8, step=1, value=4, interactive=True)
|
50 |
steps = gr.Slider(label="Inference Steps", minimum=1, maximum=8, step=1, value=1, interactive=True)
|
51 |
+
prompt = gr.Text(label="Prompt", value="a photo of a cat", interactive=True)
|
52 |
eta = gr.Number(label="Eta (Corresponds to parameter eta (η) in the DDIM paper, i.e. 0.0 eqauls DDIM, 1.0 equals LCM)", value=1., interactive=True)
|
53 |
controlnet_scale = gr.Number(label="ControlNet Conditioning Scale", value=1.0, interactive=True)
|
|
|
54 |
seed = gr.Number(label="Seed", value=3413, interactive=True)
|
|
|
55 |
btn = gr.Button(value="run")
|
56 |
+
|
57 |
with gr.Column():
|
58 |
+
output = gr.Gallery(height=768, format="png")
|
59 |
+
# output = gr.Image()
|
60 |
|
61 |
+
@spaces.GPU
|
62 |
+
def process_image(steps, prompt, controlnet_scale, eta, seed, scribble, num_images):
|
63 |
+
global pipe
|
64 |
+
if scribble:
|
65 |
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.float16), timer("inference"):
|
66 |
+
result = pipe(
|
67 |
prompt=[prompt]*num_images,
|
68 |
+
image=[ImageOps.invert(scribble['composite'])]*num_images,
|
69 |
generator=torch.Generator().manual_seed(int(seed)),
|
70 |
num_inference_steps=steps,
|
71 |
guidance_scale=0.,
|
72 |
eta=eta,
|
73 |
+
controlnet_conditioning_scale=float(controlnet_scale),
|
74 |
).images
|
75 |
+
# result[0].save("test.jpg")
|
76 |
+
# print(result[0])
|
77 |
+
return result
|
78 |
+
else:
|
79 |
+
return None
|
80 |
|
81 |
+
reactive_controls = [steps, prompt, controlnet_scale, eta, seed, scribble, num_images]
|
82 |
|
83 |
+
for control in reactive_controls:
|
84 |
+
if reactive_controls[-2] is not None:
|
85 |
+
control.change(fn=process_image, inputs=reactive_controls, outputs=[output, ])
|
86 |
|
87 |
+
btn.click(process_image, inputs=reactive_controls, outputs=[output, ])
|
88 |
|
89 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
90 |
demo.launch()
|