Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -26,9 +26,11 @@ def generate(prompt, option, progress=gr.Progress()):
|
|
26 |
print(prompt, option)
|
27 |
ckpt, step = opts[option]
|
28 |
|
|
|
|
|
29 |
# Main pipeline.
|
30 |
unet = UNet2DConditionModel.from_config(base, subfolder="unet")
|
31 |
-
pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=dtype, variant="fp16")
|
32 |
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device))
|
33 |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", prediction_type="sample" if step == 1 else "epsilon")
|
34 |
|
|
|
26 |
print(prompt, option)
|
27 |
ckpt, step = opts[option]
|
28 |
|
29 |
+
progress(0, desc="Downloading the model")
|
30 |
+
|
31 |
# Main pipeline.
|
32 |
unet = UNet2DConditionModel.from_config(base, subfolder="unet")
|
33 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=dtype, variant="fp16").to(device, dtype)
|
34 |
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device))
|
35 |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", prediction_type="sample" if step == 1 else "epsilon")
|
36 |
|