Spaces:
Sleeping
Sleeping
File size: 5,382 Bytes
3d04cf1 9a33833 98bd34e e8aafa4 3d04cf1 735d156 3d04cf1 7b1af97 3d04cf1 96a7392 3d04cf1 96a7392 3d04cf1 96a7392 3d04cf1 96a7392 3d04cf1 96a7392 3d04cf1 96a7392 3d04cf1 6220229 3d04cf1 6220229 7882172 3d04cf1 6220229 7882172 3d04cf1 6220229 7882172 9d8a1d3 3d04cf1 6220229 7882172 3d04cf1 6220229 7882172 3d04cf1 9d8a1d3 7882172 3d04cf1 9d8a1d3 9243ca2 3719586 95569ad 3719586 95569ad 3719586 3d04cf1 3e028aa 3d04cf1 3e028aa 3d04cf1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
# app.py
import gradio as gr
import os
from models import load_embedding_model, load_yi_coder_model
from pinecone_utils import connect_to_pinecone, vector_search # Ahora debería funcionar correctamente
from ui import build_interface
from config import SIMILARITY_THRESHOLD_DEFAULT, SYSTEM_PROMPT, MAX_LENGTH_DEFAULT
from decorators import gpu_decorator
import torch
########################
from utils import process_tags_chat
########################
# Cargar modelos
embedding_model = load_embedding_model()
tokenizer, yi_coder_model, yi_coder_device = load_yi_coder_model()
# Conectar a Pinecone
index = connect_to_pinecone()
# Función para generar código utilizando Yi-Coder
@gpu_decorator(duration=100)
def generate_code(system_prompt, user_prompt, max_length):
device = yi_coder_device
model = yi_coder_model
tokenizer_ = tokenizer # Ya lo tenemos cargado
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
]
# Aplicar la plantilla de chat y preparar el texto
text = tokenizer_.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer_([text], return_tensors="pt").to(device)
with torch.no_grad():
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=max_length,
eos_token_id=tokenizer_.eos_token_id
)
# Extraer solo la parte generada
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer_.batch_decode(generated_ids, skip_special_tokens=True)[0]
return response
# Función para combinar búsqueda vectorial y Yi-Coder
@gpu_decorator(duration=100)
def combined_function(user_prompt, similarity_threshold, selected_option, system_prompt, max_length):
def get_partial_message(response):
"""Obtiene el contenido después de 'Respuesta:' si está presente en la respuesta."""
if "Respuesta:" in response:
return response.split("Respuesta:")[1].strip() # Tomar solo el texto después de 'Respuesta:'
else:
return response # Devolver la respuesta completa si no contiene 'Respuesta:'
if selected_option == "Solo Búsqueda Vectorial":
# Realizar búsqueda vectorial
search_results = vector_search(user_prompt, embedding_model, index)
if search_results:
content = search_results[0]['content']
partial_message = get_partial_message(content)
return partial_message, None
else:
return "No se encontraron resultados en Pinecone.", None
elif selected_option == "Solo Yi-Coder":
# Generar respuesta usando Yi-Coder
yi_coder_response = generate_code(system_prompt, user_prompt, max_length)
partial_message = get_partial_message(yi_coder_response)
return partial_message, None
elif selected_option == "Ambos (basado en umbral de similitud)":
# Realizar búsqueda vectorial
search_results = vector_search(user_prompt, embedding_model, index)
if search_results:
top_result = search_results[0]
if top_result['score'] >= similarity_threshold:
content = top_result['content']
partial_message = get_partial_message(content)
return partial_message, None
else:
yi_coder_response = generate_code(system_prompt, user_prompt, max_length)
partial_message = get_partial_message(yi_coder_response)
return partial_message, None
else:
yi_coder_response = generate_code(system_prompt, user_prompt, max_length)
partial_message = get_partial_message(yi_coder_response)
return partial_message, None
else:
return "Opción no válida.", None
# Funciones para el procesamiento de entradas y actualización de imágenes
def process_input(message, history, selected_option, similarity_threshold, system_prompt, max_length):
response, image = combined_function(message, similarity_threshold, selected_option, system_prompt, max_length)
history.append((message, response))
return history, history, image
def update_image(image_url):
"""
Retorna los datos binarios de la imagen para ser mostrados en Gradio.
Args:
image_url (str): Ruta de la imagen.
Returns:
bytes o None: Datos binarios de la imagen si existe, de lo contrario None.
"""
if image_url and os.path.exists(image_url):
try:
with open(image_url, "rb") as img_file:
image_data = img_file.read()
return image_data
except Exception as e:
print(f"Error al leer la imagen: {e}")
return None
else:
print("No se encontró una imagen válida.")
return None
def send_preset_question(question, history, selected_option, similarity_threshold, system_prompt, max_length):
return process_input(question, history, selected_option, similarity_threshold, system_prompt, max_length)
# Construir y lanzar la interfaz
demo = build_interface(process_input, send_preset_question, update_image)
if __name__ == "__main__":
demo.launch()
|