C2MV commited on
Commit
f2e3b2e
verified
1 Parent(s): 11daf1f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -10
app.py CHANGED
@@ -15,31 +15,31 @@ tokenizer, yi_coder_model, yi_coder_device = load_yi_coder_model()
15
  # Conectar a Pinecone
16
  index = connect_to_pinecone()
17
 
18
- # Funci贸n para generar c贸digo utilizando Yi-Coder
19
  @gpu_decorator(duration=100)
20
  def generate_code(system_prompt, user_prompt, max_length):
21
  device = yi_coder_device
22
  model = yi_coder_model
23
- tokenizer_ = tokenizer # Ya lo tenemos cargado
24
 
25
- messages = [
26
- {"role": "system", "content": system_prompt},
27
- {"role": "user", "content": user_prompt}
28
- ]
29
 
30
- # Preparamos el input para el modelo
31
- prompt = system_prompt + "\n" + user_prompt
32
  model_inputs = tokenizer_(prompt, return_tensors="pt").to(device)
33
 
34
  with torch.no_grad():
 
35
  generated_ids = model.generate(
36
  model_inputs.input_ids,
37
  max_new_tokens=max_length,
38
- eos_token_id=tokenizer_.eos_token_id
39
  )
40
 
41
- # Extraer solo la parte generada
42
  generated_text = tokenizer_.batch_decode(generated_ids, skip_special_tokens=True)[0]
 
 
43
  response = generated_text[len(prompt):].strip()
44
 
45
  return response
 
15
  # Conectar a Pinecone
16
  index = connect_to_pinecone()
17
 
18
+ # Funci贸n para generar c贸digo con Yi-Coder
19
  @gpu_decorator(duration=100)
20
  def generate_code(system_prompt, user_prompt, max_length):
21
  device = yi_coder_device
22
  model = yi_coder_model
23
+ tokenizer_ = tokenizer
24
 
25
+ # Combina el system_prompt y user_prompt sin formato de chat
26
+ prompt = f"{system_prompt}\n{user_prompt}"
 
 
27
 
28
+ # Tokeniza el prompt
 
29
  model_inputs = tokenizer_(prompt, return_tensors="pt").to(device)
30
 
31
  with torch.no_grad():
32
+ # Genera la respuesta
33
  generated_ids = model.generate(
34
  model_inputs.input_ids,
35
  max_new_tokens=max_length,
36
+ eos_token_id=tokenizer_.eos_token_id
37
  )
38
 
39
+ # Decodifica el texto generado
40
  generated_text = tokenizer_.batch_decode(generated_ids, skip_special_tokens=True)[0]
41
+
42
+ # Extrae solo la parte generada despu茅s del prompt inicial
43
  response = generated_text[len(prompt):].strip()
44
 
45
  return response