File size: 1,208 Bytes
e190970 753194f 0e74637 cf4f63b e190970 753194f 0e74637 cf4f63b 3cc58a2 2e0cc12 cf4f63b 3cc58a2 e190970 cf4f63b e190970 3cc58a2 2e0cc12 e190970 2e0cc12 e190970 2e0cc12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
import altair as alt
import pandas as pd
import streamlit as st
import wandb
from dashboard_utils.bubbles import get_new_bubble_data
from dashboard_utils.main_metrics import get_main_metrics
from streamlit_observable import observable
wandb.login(anonymous="must")
st.title("Training transformers together dashboard")
st.caption("Training Loss")
steps, losses, alive_peers = get_main_metrics()
source = pd.DataFrame({"steps": steps, "loss": losses, "alive participants": alive_peers})
chart_loss = alt.Chart(source).mark_line().encode(x="steps", y="loss")
st.altair_chart(chart_loss, use_container_width=True)
st.caption("Number of alive participants over time")
chart_alive_peer = alt.Chart(source).mark_line().encode(x="steps", y="alive participants")
st.altair_chart(chart_alive_peer, use_container_width=True)
st.header("Collaborative training participants")
serialized_data, profiles = get_new_bubble_data()
with st.spinner("Wait for it..."):
observers = observable(
"Participants",
notebook="d/9ae236a507f54046", # "@huggingface/participants-bubbles-chart",
targets=["c_noaws"],
redefine={"serializedData": serialized_data, "profileSimple": profiles},
)
|