File size: 1,208 Bytes
e190970
 
753194f
0e74637
cf4f63b
 
e190970
 
753194f
0e74637
cf4f63b
3cc58a2
2e0cc12
cf4f63b
3cc58a2
e190970
cf4f63b
e190970
 
3cc58a2
2e0cc12
e190970
 
2e0cc12
 
 
e190970
2e0cc12
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import altair as alt
import pandas as pd
import streamlit as st
import wandb

from dashboard_utils.bubbles import get_new_bubble_data
from dashboard_utils.main_metrics import get_main_metrics
from streamlit_observable import observable

wandb.login(anonymous="must")

st.title("Training transformers together dashboard")
st.caption("Training Loss")

steps, losses, alive_peers = get_main_metrics()
source = pd.DataFrame({"steps": steps, "loss": losses, "alive participants": alive_peers})

chart_loss = alt.Chart(source).mark_line().encode(x="steps", y="loss")
st.altair_chart(chart_loss, use_container_width=True)

st.caption("Number of alive participants over time")
chart_alive_peer = alt.Chart(source).mark_line().encode(x="steps", y="alive participants")
st.altair_chart(chart_alive_peer, use_container_width=True)

st.header("Collaborative training participants")
serialized_data, profiles = get_new_bubble_data()
with st.spinner("Wait for it..."):
    observers = observable(
        "Participants",
        notebook="d/9ae236a507f54046",  # "@huggingface/participants-bubbles-chart",
        targets=["c_noaws"],
        redefine={"serializedData": serialized_data, "profileSimple": profiles},
    )