Spaces:
Running
Running
Commit
·
9cd9556
1
Parent(s):
1b629bf
Add app
Browse files- app.py +94 -4
- requirements.txt +4 -0
app.py
CHANGED
@@ -1,10 +1,100 @@
|
|
1 |
import gradio as gr
|
2 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
|
7 |
-
|
|
|
8 |
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
+
import httpx
|
4 |
+
import numpy as np
|
5 |
+
import base64
|
6 |
+
import torch
|
7 |
+
import torchaudio
|
8 |
+
import io
|
9 |
|
10 |
+
URL = os.environ['TEMP_HOSTING_URL']
|
11 |
+
API_KEY = os.environ['TEMP_CALLING_KEY']
|
12 |
|
13 |
+
def inference(reference_audio, text, reference_text, ras_K, ras_t_r, top_p, quality_prefix, clone_method):
|
14 |
+
_sr, _wav = reference_audio
|
15 |
|
16 |
+
wav = torch.from_numpy(_wav).float()
|
17 |
+
wav = wav / 32768.0
|
18 |
+
if wav.dim() == 1: wav = wav[None]
|
19 |
+
else:
|
20 |
+
wav = wav.mean(dim=-1)[None]
|
21 |
|
22 |
+
io_data = io.BytesIO()
|
23 |
+
torchaudio.save(io_data, wav, sample_rate=_sr, format='wav')
|
24 |
+
io_data.seek(0)
|
25 |
+
|
26 |
+
encoded_data = base64.b64encode(io_data.read())
|
27 |
+
encoded_str = encoded_data.decode("utf-8")
|
28 |
+
|
29 |
+
if clone_method == 'deep-clone':
|
30 |
+
dlc = 'fixed-ref'
|
31 |
+
elif clone_method == 'shallow-clone':
|
32 |
+
dlc = 'none'
|
33 |
+
elif clone_method == 'follow-on deep-clone':
|
34 |
+
dlc = 'per-chunk'
|
35 |
+
|
36 |
+
data = {
|
37 |
+
"text": text, #"la volpe marrone salta velocemente sopra il cane pigro.",
|
38 |
+
"reference_audio": encoded_str, # reference audio, b64 encoded. Should be <=15s.
|
39 |
+
"reference_text": reference_text if reference_text is not None and len(reference_text) > 0 else None,
|
40 |
+
"language": 'en-us',
|
41 |
+
"inference_settings": {'top_p': top_p, "prefix": quality_prefix, 'ras_K': ras_K, 'ras_t_r': ras_t_r, 'deep_clone_mode': dlc},
|
42 |
+
}
|
43 |
+
print(f"Calling with payload {data['inference_settings']}")
|
44 |
+
|
45 |
+
# Send the POST request
|
46 |
+
headers={"Authorization": f"Api-Key {API_KEY}"}
|
47 |
+
response = httpx.post(URL, headers=headers, json=data, timeout=300)
|
48 |
+
# Check the response status code
|
49 |
+
if response.status_code == 200: print("Request successful!")
|
50 |
+
else: print("Request failed with status code", response.status_code)
|
51 |
+
full_audio_bytes = base64.b64decode(response.json()['output'])
|
52 |
+
|
53 |
+
wav, sr = torchaudio.load(io.BytesIO(full_audio_bytes))
|
54 |
+
wav = wav.numpy()
|
55 |
+
|
56 |
+
return (sr, wav.T)
|
57 |
+
|
58 |
+
with gr.Blocks() as demo:
|
59 |
+
with gr.Row():
|
60 |
+
gr.Markdown("## Reference Audio")
|
61 |
+
with gr.Row():
|
62 |
+
reference_audio = gr.Audio(label="Drop Audio Here", max_length=16)
|
63 |
+
with gr.Row():
|
64 |
+
gr.Markdown("## Text to Generate")
|
65 |
+
with gr.Row():
|
66 |
+
text_input = gr.Textbox(label="Text to Generate")
|
67 |
+
with gr.Row():
|
68 |
+
synthesize_button = gr.Button("Synthesize", variant="primary")
|
69 |
+
with gr.Accordion("Advanced Settings", open=False):
|
70 |
+
with gr.Row():
|
71 |
+
reference_text = gr.Textbox(label="Reference Text",
|
72 |
+
info="Leave blank to automatically transcribe the reference audio. Inference will be slightly faster if you specify the correct reference transcript below.")
|
73 |
+
with gr.Row():
|
74 |
+
ras_K = gr.Slider(minimum=1, maximum=20, step=1, value=10, label="RAS_K", info="RAS sampling K value")
|
75 |
+
with gr.Row():
|
76 |
+
ras_t_r = gr.Slider(minimum=0.001, maximum=1, step=0.001, value=0.09, label="RAS_t_r", info="RAS sampling t_r value")
|
77 |
+
with gr.Row():
|
78 |
+
top_p = gr.Slider(minimum=0.001, maximum=1, step=0.001, value=0.2, label="top_p", info="top-p sampling value")
|
79 |
+
with gr.Row():
|
80 |
+
quality_prefix = gr.Textbox('48000', label="quality_prefix", info="quality prefix string to append to generation", lines=1)
|
81 |
+
with gr.Row():
|
82 |
+
gr.Markdown("Cloning method to use. Deep clone and shallow clone use the method described in the paper, " +
|
83 |
+
"while follow-on deep clone uses deep cloning, but always using the previous generated segment as the deep clone conditioning. " +
|
84 |
+
"This only makes a difference for long text inputs where the text is internally chunked up and generated in chunks.")
|
85 |
+
clone_method = gr.Radio(choices=['deep-clone', 'shallow-clone', 'follow-on deep-clone'], value='follow-on deep-clone', label="cloning method", info="cloning method to use")
|
86 |
+
|
87 |
+
|
88 |
+
with gr.Row():
|
89 |
+
gr.Markdown("## Synthesized Audio")
|
90 |
+
with gr.Row():
|
91 |
+
audio_output = gr.Audio(label="Synthesized Audio")
|
92 |
+
|
93 |
+
synthesize_button.click(
|
94 |
+
inference,
|
95 |
+
inputs=[reference_audio, text_input, reference_text, ras_K, ras_t_r, top_p, quality_prefix, clone_method],
|
96 |
+
outputs=[audio_output]
|
97 |
+
)
|
98 |
+
|
99 |
+
if __name__ == "__main__":
|
100 |
+
demo.launch(share=False)
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
httpx
|
2 |
+
regex
|
3 |
+
torch
|
4 |
+
torchaudio
|