import gradio as gr import os import httpx import numpy as np import base64 import torch import torchaudio import io URL = os.environ['TEMP_HOSTING_URL'] API_KEY = os.environ['TEMP_CALLING_KEY'] def inference(reference_audio, text, reference_text, ras_K, ras_t_r, top_p, quality_prefix, clone_method): _sr, _wav = reference_audio wav = torch.from_numpy(_wav).float() wav = wav / 32768.0 if wav.dim() == 1: wav = wav[None] else: wav = wav.mean(dim=-1)[None] wav = torchaudio.functional.resample(wav, _sr, 24000) io_data = io.BytesIO() torchaudio.save(io_data, wav, sample_rate=24000, format='wav') io_data.seek(0) encoded_data = base64.b64encode(io_data.read()) encoded_str = encoded_data.decode("utf-8") if clone_method == 'deep-clone': dlc = 'fixed-ref' elif clone_method == 'shallow-clone': dlc = 'none' elif clone_method == 'follow-on deep-clone': dlc = 'per-chunk' data = { "text": text, "reference_audio": encoded_str, # reference audio, b64 encoded. Should be <=15s. "reference_text": reference_text if reference_text is not None and len(reference_text) > 0 else None, "language": 'en-us', "inference_settings": {'top_p': top_p, "prefix": quality_prefix, 'ras_K': ras_K, 'ras_t_r': ras_t_r, 'deep_clone_mode': dlc}, } print(f"Calling with payload {data['inference_settings']}") # Send the POST request headers={"Authorization": f"Api-Key {API_KEY}"} response = httpx.post(URL, headers=headers, json=data, timeout=300) # Check the response status code if response.status_code == 200: print("Request successful!") else: print("Request failed with status code", response.status_code) full_audio_bytes = base64.b64decode(response.json()['output']) wav, sr = torchaudio.load(io.BytesIO(full_audio_bytes)) wav = wav.numpy() return (sr, wav.T) with gr.Blocks() as demo: with gr.Row(): gr.Markdown("## Reference Audio") with gr.Row(): reference_audio = gr.Audio(label="Drop Audio Here", max_length=16) with gr.Row(): gr.Markdown("## Text to Generate") with gr.Row(): text_input = gr.Textbox(label="Text to Generate") with gr.Row(): synthesize_button = gr.Button("Synthesize", variant="primary") with gr.Accordion("Advanced Settings", open=False): with gr.Row(): reference_text = gr.Textbox(label="Reference Text", info="Leave blank to automatically transcribe the reference audio. Inference will be slightly faster if you specify the correct reference transcript below.") with gr.Row(): ras_K = gr.Slider(minimum=1, maximum=20, step=1, value=10, label="RAS_K", info="RAS sampling K value") with gr.Row(): ras_t_r = gr.Slider(minimum=0.001, maximum=1, step=0.001, value=0.09, label="RAS_t_r", info="RAS sampling t_r value") with gr.Row(): top_p = gr.Slider(minimum=0.001, maximum=1, step=0.001, value=0.2, label="top_p", info="top-p sampling value") with gr.Row(): quality_prefix = gr.Textbox('48000', label="quality_prefix", info="quality prefix string to append to generation", lines=1) with gr.Row(): gr.Markdown("Cloning method to use. Deep clone and shallow clone use the method described in the paper, " + "while `follow-on deep clone` uses deep cloning, but always using the previous generated segment as the deep clone conditioning. " + "This only makes a difference for long text inputs where the text is internally chunked up and generated in chunks.") clone_method = gr.Radio(choices=['deep-clone', 'shallow-clone', 'follow-on deep-clone'], value='deep-clone', label="cloning method", info="cloning method to use") with gr.Row(): gr.Markdown("## Synthesized Audio") with gr.Row(): audio_output = gr.Audio(label="Synthesized Audio") synthesize_button.click( inference, inputs=[reference_audio, text_input, reference_text, ras_K, ras_t_r, top_p, quality_prefix, clone_method], outputs=[audio_output] ) if __name__ == "__main__": demo.launch(share=False)