Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,17 @@
|
|
1 |
import streamlit as st
|
2 |
import joblib
|
3 |
from sentence_transformers import SentenceTransformer
|
|
|
4 |
|
5 |
# Load the pre-trained embedding model
|
6 |
@st.cache_resource # Cache the embedding model to save loading time
|
7 |
def load_embedding_model():
|
8 |
return SentenceTransformer('neuml/pubmedbert-base-embeddings')
|
9 |
|
10 |
-
# Load the
|
11 |
@st.cache_resource # Cache the loaded model
|
12 |
-
def
|
13 |
-
with open("
|
14 |
return joblib.load(file)
|
15 |
|
16 |
# Embed text
|
@@ -19,9 +20,15 @@ def get_embeddings(title, abstract, embedding_model):
|
|
19 |
combined_text = title + " " + abstract
|
20 |
return embedding_model.encode(combined_text)
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
# Main Streamlit app
|
23 |
def main():
|
24 |
-
st.title("
|
25 |
|
26 |
# Input fields
|
27 |
title = st.text_input("Enter the Title:")
|
@@ -29,10 +36,10 @@ def main():
|
|
29 |
|
30 |
# Load models
|
31 |
embedding_model = load_embedding_model()
|
32 |
-
|
33 |
|
34 |
# Predict button
|
35 |
-
if st.button("Predict
|
36 |
if title.strip() == "" or abstract.strip() == "":
|
37 |
st.error("Both Title and Abstract are required!")
|
38 |
else:
|
@@ -40,10 +47,17 @@ def main():
|
|
40 |
embeddings = get_embeddings(title, abstract, embedding_model)
|
41 |
|
42 |
# Make prediction
|
43 |
-
|
44 |
|
45 |
-
#
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
if __name__ == "__main__":
|
49 |
main()
|
|
|
|
1 |
import streamlit as st
|
2 |
import joblib
|
3 |
from sentence_transformers import SentenceTransformer
|
4 |
+
import numpy as np
|
5 |
|
6 |
# Load the pre-trained embedding model
|
7 |
@st.cache_resource # Cache the embedding model to save loading time
|
8 |
def load_embedding_model():
|
9 |
return SentenceTransformer('neuml/pubmedbert-base-embeddings')
|
10 |
|
11 |
+
# Load the multilabel classification model
|
12 |
@st.cache_resource # Cache the loaded model
|
13 |
+
def load_multilabel_model():
|
14 |
+
with open("multilabel_model.pkl", "rb") as file:
|
15 |
return joblib.load(file)
|
16 |
|
17 |
# Embed text
|
|
|
20 |
combined_text = title + " " + abstract
|
21 |
return embedding_model.encode(combined_text)
|
22 |
|
23 |
+
# Map predicted binary outputs to labels
|
24 |
+
LABELS = ["device", "screening", "drug", "surgery", "imaging", "telemedicine"]
|
25 |
+
|
26 |
+
def decode_predictions(predictions):
|
27 |
+
return [label for label, pred in zip(LABELS, predictions) if pred == 1]
|
28 |
+
|
29 |
# Main Streamlit app
|
30 |
def main():
|
31 |
+
st.title("Multilabel Classifier for Titles and Abstracts")
|
32 |
|
33 |
# Input fields
|
34 |
title = st.text_input("Enter the Title:")
|
|
|
36 |
|
37 |
# Load models
|
38 |
embedding_model = load_embedding_model()
|
39 |
+
multilabel_model = load_multilabel_model()
|
40 |
|
41 |
# Predict button
|
42 |
+
if st.button("Predict Labels"):
|
43 |
if title.strip() == "" or abstract.strip() == "":
|
44 |
st.error("Both Title and Abstract are required!")
|
45 |
else:
|
|
|
47 |
embeddings = get_embeddings(title, abstract, embedding_model)
|
48 |
|
49 |
# Make prediction
|
50 |
+
predictions = multilabel_model.predict([embeddings])[0] # Input should be a 2D array
|
51 |
|
52 |
+
# Decode predictions
|
53 |
+
predicted_labels = decode_predictions(predictions)
|
54 |
+
|
55 |
+
# Display results
|
56 |
+
if predicted_labels:
|
57 |
+
st.success(f"The predicted labels are: {', '.join(predicted_labels)}")
|
58 |
+
else:
|
59 |
+
st.warning("No relevant labels were predicted.")
|
60 |
|
61 |
if __name__ == "__main__":
|
62 |
main()
|
63 |
+
|