Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
2 |
+
import gradio as gr
|
3 |
+
import mdtex2html
|
4 |
+
import torch
|
5 |
+
|
6 |
+
"""Override Chatbot.postprocess"""
|
7 |
+
|
8 |
+
|
9 |
+
# model_path = '/cjl/llm_finetuning/output/prompt_engineer_en_final/bpo_model'
|
10 |
+
model_path = 'lmsys/vicuna-7b-v1.5'
|
11 |
+
|
12 |
+
device = 'cpu'
|
13 |
+
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, add_prefix_space=True)
|
15 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True).to(device)
|
16 |
+
model = model.eval()
|
17 |
+
|
18 |
+
prompt_template = "[INST] You are an expert prompt engineer. Please help me improve this prompt to get a more helpful and harmless response:\n{} [/INST]"
|
19 |
+
|
20 |
+
|
21 |
+
def postprocess(self, y):
|
22 |
+
if y is None:
|
23 |
+
return []
|
24 |
+
for i, (message, response) in enumerate(y):
|
25 |
+
y[i] = (
|
26 |
+
None if message is None else mdtex2html.convert((message)),
|
27 |
+
None if response is None else mdtex2html.convert(response),
|
28 |
+
)
|
29 |
+
return y
|
30 |
+
|
31 |
+
|
32 |
+
gr.Chatbot.postprocess = postprocess
|
33 |
+
|
34 |
+
|
35 |
+
def parse_text(text):
|
36 |
+
"""copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/"""
|
37 |
+
lines = text.split("\n")
|
38 |
+
lines = [line for line in lines if line != ""]
|
39 |
+
count = 0
|
40 |
+
for i, line in enumerate(lines):
|
41 |
+
if "```" in line:
|
42 |
+
count += 1
|
43 |
+
items = line.split('`')
|
44 |
+
if count % 2 == 1:
|
45 |
+
lines[i] = f'<pre><code class="language-{items[-1]}">'
|
46 |
+
else:
|
47 |
+
lines[i] = f'<br></code></pre>'
|
48 |
+
else:
|
49 |
+
if i > 0:
|
50 |
+
if count % 2 == 1:
|
51 |
+
line = line.replace("`", "\`")
|
52 |
+
line = line.replace("<", "<")
|
53 |
+
line = line.replace(">", ">")
|
54 |
+
line = line.replace(" ", " ")
|
55 |
+
line = line.replace("*", "*")
|
56 |
+
line = line.replace("_", "_")
|
57 |
+
line = line.replace("-", "-")
|
58 |
+
line = line.replace(".", ".")
|
59 |
+
line = line.replace("!", "!")
|
60 |
+
line = line.replace("(", "(")
|
61 |
+
line = line.replace(")", ")")
|
62 |
+
line = line.replace("$", "$")
|
63 |
+
lines[i] = "<br>"+line
|
64 |
+
text = "".join(lines)
|
65 |
+
return text
|
66 |
+
|
67 |
+
|
68 |
+
def predict(input, chatbot, max_length, top_p, temperature, history):
|
69 |
+
|
70 |
+
if input.strip() == "":
|
71 |
+
chatbot = [(parse_text(input), parse_text("Please input a valid user prompt. Empty string is not supported."))]
|
72 |
+
return chatbot, history
|
73 |
+
|
74 |
+
prompt = prompt_template.format(input)
|
75 |
+
model_inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
76 |
+
output = model.generate(**model_inputs, max_length=max_length, do_sample=True, top_p=top_p,
|
77 |
+
temperature=temperature, num_beams=1)
|
78 |
+
resp = tokenizer.decode(output[0], skip_special_tokens=True).split('[/INST]')[1].strip()
|
79 |
+
|
80 |
+
optimized_prompt = """Here are several optimized prompts:
|
81 |
+
|
82 |
+
====================Stable Optimization====================
|
83 |
+
"""
|
84 |
+
optimized_prompt += resp
|
85 |
+
chatbot = [(parse_text(input), parse_text(optimized_prompt))]
|
86 |
+
yield chatbot, history
|
87 |
+
|
88 |
+
optimized_prompt += "\n\n====================Aggressive Optimization===================="
|
89 |
+
|
90 |
+
texts = [input] * 5
|
91 |
+
responses = []
|
92 |
+
num = 0
|
93 |
+
for text in texts:
|
94 |
+
num += 1
|
95 |
+
seed = torch.seed()
|
96 |
+
torch.manual_seed(seed)
|
97 |
+
prompt = prompt_template.format(text)
|
98 |
+
min_length = len(tokenizer(prompt)['input_ids']) + len(tokenizer(text)['input_ids']) + 5
|
99 |
+
model_inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
100 |
+
bad_words_ids = [tokenizer(bad_word, add_special_tokens=False).input_ids for bad_word in ["[PROTECT]", "\n\n[PROTECT]", "[KEEP", "[INSTRUCTION]"]]
|
101 |
+
# eos and \n
|
102 |
+
eos_token_ids = [tokenizer.eos_token_id, 13]
|
103 |
+
output = model.generate(**model_inputs, max_new_tokens=1024, do_sample=True, top_p=0.9, temperature=0.9, bad_words_ids=bad_words_ids, num_beams=1, eos_token_id=eos_token_ids, min_length=min_length)
|
104 |
+
resp = tokenizer.decode(output[0], skip_special_tokens=True).split('[/INST]')[1].split('[KE')[0].split('[INS')[0].split('[PRO')[0].strip()
|
105 |
+
|
106 |
+
optimized_prompt += f"\n{num}. {resp}"
|
107 |
+
|
108 |
+
chatbot = [(parse_text(input), parse_text(optimized_prompt))]
|
109 |
+
yield chatbot, history
|
110 |
+
|
111 |
+
# for i in responses:
|
112 |
+
# print("[Aggressive Optimization] ", i)
|
113 |
+
|
114 |
+
|
115 |
+
def reset_user_input():
|
116 |
+
return gr.update(value='')
|
117 |
+
|
118 |
+
|
119 |
+
def reset_state():
|
120 |
+
return [], []
|
121 |
+
|
122 |
+
|
123 |
+
with gr.Blocks() as demo:
|
124 |
+
gr.HTML("""<h1 align="center">Prompt Preference Optimizer</h1>""")
|
125 |
+
|
126 |
+
chatbot = gr.Chatbot(label="Prompt Optimization Chatbot")
|
127 |
+
with gr.Row():
|
128 |
+
with gr.Column(scale=4):
|
129 |
+
with gr.Column(scale=12):
|
130 |
+
user_input = gr.Textbox(show_label=False, placeholder="User Prompt...", lines=10).style(
|
131 |
+
container=False)
|
132 |
+
with gr.Column(min_width=32, scale=1):
|
133 |
+
submitBtn = gr.Button("Submit", variant="primary")
|
134 |
+
with gr.Column(scale=1):
|
135 |
+
emptyBtn = gr.Button("Clear History")
|
136 |
+
max_length = gr.Slider(0, 4096, value=2048, step=1.0, label="Maximum length", interactive=True)
|
137 |
+
top_p = gr.Slider(0, 1, value=0.9, step=0.01, label="Top P", interactive=True)
|
138 |
+
temperature = gr.Slider(0, 1, value=0.6, step=0.01, label="Temperature", interactive=True)
|
139 |
+
|
140 |
+
history = gr.State([])
|
141 |
+
|
142 |
+
submitBtn.click(predict, [user_input, chatbot, max_length, top_p, temperature, history], [chatbot, history],
|
143 |
+
show_progress=True)
|
144 |
+
submitBtn.click(reset_user_input, [], [user_input])
|
145 |
+
|
146 |
+
emptyBtn.click(reset_state, outputs=[chatbot, history], show_progress=True)
|
147 |
+
|
148 |
+
demo.queue().launch(share=False, inbrowser=True)
|