Spaces:
Running
Running
push updates to cdao prod
Browse files- README.md +1 -1
- app.py → gradio/app.py +421 -80
- carbon_colors.py → gradio/carbon_colors.py +0 -0
- carbon_theme.py → gradio/carbon_theme.py +0 -0
- requirements.txt +4 -54
- setup.py +0 -42
- utils/data/coco_elephant.jpg +0 -0
README.md
CHANGED
@@ -5,7 +5,7 @@ colorFrom: indigo
|
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.13.0
|
8 |
-
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
---
|
|
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.13.0
|
8 |
+
app_file: gradio/app.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
---
|
app.py → gradio/app.py
RENAMED
@@ -24,7 +24,224 @@ css = """
|
|
24 |
padding-left: 50px !important;
|
25 |
padding-right: 50px !important;
|
26 |
}
|
|
|
|
|
|
|
|
|
|
|
27 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
def extract_predictions(predictions_, conf_thresh):
|
30 |
coco_labels = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
|
@@ -109,7 +326,7 @@ def basic_cifar10_model():
|
|
109 |
'''
|
110 |
Load an example CIFAR10 model
|
111 |
'''
|
112 |
-
from
|
113 |
|
114 |
labels = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
|
115 |
path = './'
|
@@ -230,7 +447,7 @@ def det_evasion_evaluate(*args):
|
|
230 |
image = np.array(coco_images)*255
|
231 |
|
232 |
if model_type == "YOLOv5":
|
233 |
-
from
|
234 |
coco_labels = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
|
235 |
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
|
236 |
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
|
@@ -251,8 +468,8 @@ def det_evasion_evaluate(*args):
|
|
251 |
if attack=="PGD":
|
252 |
|
253 |
from art.attacks.evasion import ProjectedGradientDescent
|
254 |
-
from
|
255 |
-
from
|
256 |
from torch.nn.functional import softmax
|
257 |
from maite.protocols import HasDataImage, is_typed_dict
|
258 |
|
@@ -308,11 +525,7 @@ def det_evasion_evaluate(*args):
|
|
308 |
|
309 |
elif attack=="Adversarial Patch":
|
310 |
from art.attacks.evasion.adversarial_patch.adversarial_patch_pytorch import AdversarialPatchPyTorch
|
311 |
-
from
|
312 |
-
from heart.metrics import AccuracyPerturbationMetric
|
313 |
-
from torch.nn.functional import softmax
|
314 |
-
from maite.protocols import HasDataImage, is_typed_dict
|
315 |
-
|
316 |
|
317 |
batch_size = 16
|
318 |
scale_min = 0.3
|
@@ -321,9 +534,9 @@ def det_evasion_evaluate(*args):
|
|
321 |
learning_rate = 5000.
|
322 |
|
323 |
patch_attack = AdversarialPatchPyTorch(estimator=detector, rotation_max=rotation_max, patch_location=(args[8], args[9]),
|
324 |
-
scale_min=scale_min, scale_max=scale_max, patch_type='
|
325 |
learning_rate=learning_rate, max_iter=args[7], batch_size=batch_size,
|
326 |
-
patch_shape=(3, args[10], args[
|
327 |
|
328 |
attack = JaticAttack(patch_attack)
|
329 |
|
@@ -368,8 +581,10 @@ def det_evasion_evaluate(*args):
|
|
368 |
adv_imgs = []
|
369 |
for i, img in enumerate(out_imgs):
|
370 |
adv_imgs.append(img.astype(np.uint8))
|
371 |
-
|
372 |
-
|
|
|
|
|
373 |
|
374 |
def clf_evasion_evaluate(*args):
|
375 |
'''
|
@@ -449,7 +664,7 @@ def clf_evasion_evaluate(*args):
|
|
449 |
jptc = basic_cifar10_model()
|
450 |
elif model_type == "Example XView":
|
451 |
import torchvision
|
452 |
-
from
|
453 |
classes = {
|
454 |
0:'Building',
|
455 |
1:'Construction Site',
|
@@ -469,7 +684,7 @@ def clf_evasion_evaluate(*args):
|
|
469 |
)
|
470 |
elif model_type == "torchvision":
|
471 |
from maite.interop.torchvision import TorchVisionClassifier
|
472 |
-
from
|
473 |
|
474 |
clf = TorchVisionClassifier.from_pretrained(model_path)
|
475 |
loss_fn = torch.nn.CrossEntropyLoss(reduction="sum")
|
@@ -479,7 +694,7 @@ def clf_evasion_evaluate(*args):
|
|
479 |
)
|
480 |
elif model_type == "huggingface":
|
481 |
from maite.interop.huggingface import HuggingFaceImageClassifier
|
482 |
-
from
|
483 |
|
484 |
clf = HuggingFaceImageClassifier.from_pretrained(model_path)
|
485 |
loss_fn = torch.nn.CrossEntropyLoss(reduction="sum")
|
@@ -490,8 +705,8 @@ def clf_evasion_evaluate(*args):
|
|
490 |
|
491 |
if attack=="PGD":
|
492 |
from art.attacks.evasion.projected_gradient_descent.projected_gradient_descent_pytorch import ProjectedGradientDescentPyTorch
|
493 |
-
from
|
494 |
-
from
|
495 |
from torch.nn.functional import softmax
|
496 |
from maite.protocols import HasDataImage, is_typed_dict, ArrayLike
|
497 |
|
@@ -551,8 +766,8 @@ def clf_evasion_evaluate(*args):
|
|
551 |
|
552 |
elif attack=="Adversarial Patch":
|
553 |
from art.attacks.evasion.adversarial_patch.adversarial_patch_pytorch import AdversarialPatchPyTorch
|
554 |
-
from
|
555 |
-
from
|
556 |
from torch.nn.functional import softmax
|
557 |
from maite.protocols import HasDataImage, is_typed_dict, ArrayLike
|
558 |
|
@@ -568,7 +783,7 @@ def clf_evasion_evaluate(*args):
|
|
568 |
patch_attack = AdversarialPatchPyTorch(estimator=jptc, rotation_max=rotation_max, patch_location=(args[8], args[9]),
|
569 |
scale_min=scale_min, scale_max=scale_max, patch_type='square',
|
570 |
learning_rate=learning_rate, max_iter=args[7], batch_size=batch_size,
|
571 |
-
patch_shape=(3, args[10], args[
|
572 |
|
573 |
attack = JaticAttack(patch_attack)
|
574 |
|
@@ -578,11 +793,11 @@ def clf_evasion_evaluate(*args):
|
|
578 |
for i, label in enumerate(jptc.get_labels()):
|
579 |
labels[label] = preds[0][i]
|
580 |
|
581 |
-
if args[
|
582 |
if is_typed_dict(image, HasDataImage):
|
583 |
-
data = {'image': image['image'], 'label': [args[
|
584 |
else:
|
585 |
-
data = {'image': image, 'label': [args[
|
586 |
else:
|
587 |
data = image
|
588 |
|
@@ -755,6 +970,7 @@ with gr.Blocks(css=css, theme='xiaobaiyuan/theme_brief') as demo:
|
|
755 |
columns=['label']).rename_axis('target').reset_index(),
|
756 |
visible=False, elem_classes=["small-font", "df-padding"],
|
757 |
type="pandas",interactive=False)
|
|
|
758 |
eval_btn_pgd = gr.Button("Evaluate")
|
759 |
model_clip.change(pgd_update_epsilon, model_clip, eps)
|
760 |
dataset_type.change(show_target_label_dataframe, dataset_type, [cifar_labels, xview_labels])
|
@@ -791,14 +1007,40 @@ with gr.Blocks(css=css, theme='xiaobaiyuan/theme_brief') as demo:
|
|
791 |
with gr.Row():
|
792 |
|
793 |
with gr.Column(scale=1):
|
794 |
-
|
795 |
-
|
796 |
-
|
797 |
-
|
798 |
-
|
799 |
-
|
800 |
-
|
801 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
802 |
cifar_labels = gr.Dataframe(pd.DataFrame(['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'],
|
803 |
columns=['label']).rename_axis('target').reset_index(),
|
804 |
visible=True, elem_classes=["small-font", "df-padding"],
|
@@ -808,31 +1050,31 @@ with gr.Blocks(css=css, theme='xiaobaiyuan/theme_brief') as demo:
|
|
808 |
columns=['label']).rename_axis('target').reset_index(),
|
809 |
visible=False, elem_classes=["small-font", "df-padding"],
|
810 |
type="pandas",interactive=False)
|
811 |
-
|
812 |
-
|
813 |
-
|
814 |
-
|
815 |
# Evaluation Output. Visualisations of success/failures of running evaluation attacks.
|
|
|
816 |
with gr.Column(scale=2):
|
817 |
-
|
818 |
-
|
819 |
-
|
820 |
-
|
821 |
-
|
822 |
-
|
823 |
-
|
824 |
-
|
825 |
-
|
826 |
-
|
827 |
-
|
828 |
-
|
829 |
-
|
830 |
-
|
831 |
-
|
832 |
-
|
833 |
-
|
834 |
-
|
835 |
-
robust_accuracy, patch_image])
|
836 |
|
837 |
with gr.Row():
|
838 |
clear_btn = gr.ClearButton([image, targeted, original_gallery, benign_output, clean_accuracy,
|
@@ -930,40 +1172,64 @@ with gr.Blocks(css=css, theme='xiaobaiyuan/theme_brief') as demo:
|
|
930 |
with gr.Row():
|
931 |
clear_btn = gr.ClearButton([image, original_gallery,
|
932 |
adversarial_gallery])
|
933 |
-
|
934 |
-
|
935 |
-
|
936 |
with gr.Tab("Adversarial Patch"):
|
937 |
gr.Markdown("This attack crafts an adversarial patch that facilitates evasion.")
|
938 |
|
939 |
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
940 |
|
941 |
with gr.Column(scale=1):
|
942 |
-
|
943 |
-
|
944 |
-
|
945 |
-
|
946 |
-
|
947 |
-
|
948 |
-
targeted = gr.Radio(choices=['Yes', 'No'], value='No', label="Targeted")
|
949 |
-
det_threshold = gr.Slider(minimum=0.0, maximum=100, label="Detection threshold", value=0.2)
|
950 |
-
eval_btn_patch = gr.Button("Evaluate")
|
951 |
-
model_clip.change()
|
952 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
953 |
# Evaluation Output. Visualisations of success/failures of running evaluation attacks.
|
954 |
with gr.Column(scale=3):
|
955 |
with gr.Row():
|
956 |
-
with gr.Column():
|
957 |
original_gallery = gr.Gallery(label="Original", preview=True, show_download_button=True, height=600)
|
958 |
|
959 |
-
with gr.Column():
|
960 |
adversarial_gallery = gr.Gallery(label="Adversarial", preview=True, show_download_button=True, height=600)
|
|
|
|
|
|
|
961 |
|
962 |
dataset_type.change(patch_show_label_output, dataset_type, [adversarial_output, ])
|
963 |
eval_btn_patch.click(det_evasion_evaluate, inputs=[attack, model_type, model_path, model_channels, model_height, model_width,
|
964 |
-
model_clip, max_iter, x_location, y_location,
|
965 |
det_threshold,dataset_type, image],
|
966 |
-
outputs=[original_gallery, adversarial_gallery])
|
967 |
|
968 |
with gr.Row():
|
969 |
clear_btn = gr.ClearButton([image, targeted, original_gallery,
|
@@ -994,20 +1260,95 @@ with gr.Blocks(css=css, theme='xiaobaiyuan/theme_brief') as demo:
|
|
994 |
with gr.Tab("AutoAttack"):
|
995 |
gr.Markdown("Coming soon.")
|
996 |
|
997 |
-
if __name__ == "__main__":
|
998 |
|
999 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1000 |
|
|
|
|
|
|
|
1001 |
# Huggingface does not support LFS via external https, disable smudge
|
1002 |
os.putenv('GIT_LFS_SKIP_SMUDGE', '1')
|
1003 |
|
1004 |
-
|
1005 |
-
|
1006 |
-
|
1007 |
-
HEART_INSTALL=f"git+https://{HEART_USER}:{HEART_TOKEN}@gitlab.jatic.net/jatic/ibm/hardened-extension-adversarial-robustness-toolbox.git"
|
1008 |
|
1009 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1010 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1011 |
# during development, set debug=True
|
1012 |
-
demo.launch(debug=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1013 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
padding-left: 50px !important;
|
25 |
padding-right: 50px !important;
|
26 |
}
|
27 |
+
|
28 |
+
.output-image, img {
|
29 |
+
border-radius: 0px !important;
|
30 |
+
margin: auto !important;
|
31 |
+
}
|
32 |
"""
|
33 |
+
def update_patch_sliders(*args):
|
34 |
+
from maite.protocols import HasDataImage, is_typed_dict
|
35 |
+
|
36 |
+
x_location, y_location, patch_dim, dataset_type, dataset_path, dataset_split, image = args
|
37 |
+
|
38 |
+
if dataset_type == "Example XView":
|
39 |
+
from maite import load_dataset
|
40 |
+
import torchvision
|
41 |
+
jatic_dataset = load_dataset(
|
42 |
+
provider="huggingface",
|
43 |
+
dataset_name="CDAO/xview-subset-classification",
|
44 |
+
task="image-classification",
|
45 |
+
split="test",
|
46 |
+
)
|
47 |
+
IMAGE_H, IMAGE_W = 224, 224
|
48 |
+
transform = torchvision.transforms.Compose(
|
49 |
+
[
|
50 |
+
torchvision.transforms.Resize((IMAGE_H, IMAGE_W)),
|
51 |
+
torchvision.transforms.ToTensor(),
|
52 |
+
]
|
53 |
+
)
|
54 |
+
jatic_dataset.set_transform(lambda x: {"image": transform(x["image"]), "label": x["label"]})
|
55 |
+
image = {'image': [i['image'].numpy() for i in jatic_dataset],
|
56 |
+
'label': [i['label'] for i in jatic_dataset]}
|
57 |
+
image = (image['image'][0].transpose(1,2,0)*255).astype(np.uint8)
|
58 |
+
elif dataset_type=="huggingface":
|
59 |
+
from maite import load_dataset
|
60 |
+
jatic_dataset = load_dataset(
|
61 |
+
provider=dataset_type,
|
62 |
+
dataset_name=dataset_path,
|
63 |
+
task="image-classification",
|
64 |
+
split=dataset_split,
|
65 |
+
drop_labels=False
|
66 |
+
)
|
67 |
+
|
68 |
+
image = {'image': [i['image'] for i in jatic_dataset],
|
69 |
+
'label': [i['label'] for i in jatic_dataset]}
|
70 |
+
elif dataset_type=="torchvision":
|
71 |
+
from maite import load_dataset
|
72 |
+
jatic_dataset = load_dataset(
|
73 |
+
provider=dataset_type,
|
74 |
+
dataset_name=dataset_path,
|
75 |
+
task="image-classification",
|
76 |
+
split=dataset_split,
|
77 |
+
root='./data/',
|
78 |
+
download=True
|
79 |
+
)
|
80 |
+
image = {'image': [i['image'] for i in jatic_dataset],
|
81 |
+
'label': [i['label'] for i in jatic_dataset]}
|
82 |
+
elif dataset_type=="Example CIFAR10":
|
83 |
+
from maite import load_dataset
|
84 |
+
jatic_dataset = load_dataset(
|
85 |
+
provider="torchvision",
|
86 |
+
dataset_name="CIFAR10",
|
87 |
+
task="image-classification",
|
88 |
+
split=dataset_split,
|
89 |
+
root='./data/',
|
90 |
+
download=True
|
91 |
+
)
|
92 |
+
image = np.array(jatic_dataset[0]['image'])
|
93 |
+
elif dataset_type=="COCO":
|
94 |
+
from torchvision.transforms import transforms
|
95 |
+
import requests
|
96 |
+
from PIL import Image
|
97 |
+
NUMBER_CHANNELS = 3
|
98 |
+
INPUT_SHAPE = (NUMBER_CHANNELS, 640, 640)
|
99 |
+
|
100 |
+
transform = transforms.Compose([
|
101 |
+
transforms.Resize(INPUT_SHAPE[1], interpolation=transforms.InterpolationMode.BICUBIC),
|
102 |
+
transforms.CenterCrop(INPUT_SHAPE[1]),
|
103 |
+
transforms.ToTensor()
|
104 |
+
])
|
105 |
+
|
106 |
+
urls = ['http://images.cocodataset.org/val2017/000000039769.jpg']
|
107 |
+
|
108 |
+
coco_images = []
|
109 |
+
for url in urls:
|
110 |
+
im = Image.open(requests.get(url, stream=True).raw)
|
111 |
+
im = transform(im).numpy()
|
112 |
+
coco_images.append(im)
|
113 |
+
image = np.array(coco_images)*255
|
114 |
+
image = image[0].transpose(1,2,0).astype(np.uint8)
|
115 |
+
|
116 |
+
if is_typed_dict(image, HasDataImage):
|
117 |
+
image = image['image']
|
118 |
+
|
119 |
+
if isinstance(image, list):
|
120 |
+
image = image[0]
|
121 |
+
|
122 |
+
height = image.shape[0]
|
123 |
+
width = image.shape[1]
|
124 |
+
|
125 |
+
max_patch = min(height, width)
|
126 |
+
if patch_dim > max_patch:
|
127 |
+
patch_dim = max_patch
|
128 |
+
|
129 |
+
max_x = width - (patch_dim)
|
130 |
+
max_y = height - (patch_dim)
|
131 |
+
|
132 |
+
max_x = max_x if max_x >= 0 else 0
|
133 |
+
max_y = max_y if max_y >= 0 else 0
|
134 |
+
|
135 |
+
if x_location > max_x:
|
136 |
+
x_location = max_x
|
137 |
+
if y_location > max_y:
|
138 |
+
y_location = max_y
|
139 |
+
|
140 |
+
return [gr.Slider(maximum=max_patch, step=1), gr.Slider(maximum=max_x, value=x_location, step=1), gr.Slider(maximum=max_y, value=y_location, step=1)]
|
141 |
+
|
142 |
+
def preview_patch_location(*args):
|
143 |
+
'''
|
144 |
+
Create a gallery of images with a sample patch applied
|
145 |
+
'''
|
146 |
+
import cv2
|
147 |
+
from maite.protocols import HasDataImage, is_typed_dict
|
148 |
+
|
149 |
+
x_location, y_location, patch_dim = int(args[0]), int(args[1]), int(args[2])
|
150 |
+
|
151 |
+
dataset_type = args[-4]
|
152 |
+
dataset_path = args[-3]
|
153 |
+
dataset_split = args[-2]
|
154 |
+
image = args[-1]
|
155 |
+
|
156 |
+
if dataset_type == "Example XView":
|
157 |
+
from maite import load_dataset
|
158 |
+
import torchvision
|
159 |
+
jatic_dataset = load_dataset(
|
160 |
+
provider="huggingface",
|
161 |
+
dataset_name="CDAO/xview-subset-classification",
|
162 |
+
task="image-classification",
|
163 |
+
split="test",
|
164 |
+
)
|
165 |
+
IMAGE_H, IMAGE_W = 224, 224
|
166 |
+
transform = torchvision.transforms.Compose(
|
167 |
+
[
|
168 |
+
torchvision.transforms.Resize((IMAGE_H, IMAGE_W)),
|
169 |
+
torchvision.transforms.ToTensor(),
|
170 |
+
]
|
171 |
+
)
|
172 |
+
jatic_dataset.set_transform(lambda x: {"image": transform(x["image"]), "label": x["label"]})
|
173 |
+
image = {'image': [i['image'].numpy() for i in jatic_dataset],
|
174 |
+
'label': [i['label'] for i in jatic_dataset]}
|
175 |
+
image = (image['image'][0].transpose(1,2,0)*255).astype(np.uint8)
|
176 |
+
elif dataset_type=="huggingface":
|
177 |
+
from maite import load_dataset
|
178 |
+
jatic_dataset = load_dataset(
|
179 |
+
provider=dataset_type,
|
180 |
+
dataset_name=dataset_path,
|
181 |
+
task="image-classification",
|
182 |
+
split=dataset_split,
|
183 |
+
drop_labels=False
|
184 |
+
)
|
185 |
+
|
186 |
+
image = {'image': [i['image'] for i in jatic_dataset],
|
187 |
+
'label': [i['label'] for i in jatic_dataset]}
|
188 |
+
elif dataset_type=="torchvision":
|
189 |
+
from maite import load_dataset
|
190 |
+
jatic_dataset = load_dataset(
|
191 |
+
provider=dataset_type,
|
192 |
+
dataset_name=dataset_path,
|
193 |
+
task="image-classification",
|
194 |
+
split=dataset_split,
|
195 |
+
root='./data/',
|
196 |
+
download=True
|
197 |
+
)
|
198 |
+
image = {'image': [i['image'] for i in jatic_dataset],
|
199 |
+
'label': [i['label'] for i in jatic_dataset]}
|
200 |
+
elif dataset_type=="Example CIFAR10":
|
201 |
+
from maite import load_dataset
|
202 |
+
jatic_dataset = load_dataset(
|
203 |
+
provider="torchvision",
|
204 |
+
dataset_name="CIFAR10",
|
205 |
+
task="image-classification",
|
206 |
+
split=dataset_split,
|
207 |
+
root='./data/',
|
208 |
+
download=True
|
209 |
+
)
|
210 |
+
image = np.array(jatic_dataset[0]['image'])
|
211 |
+
elif dataset_type=="COCO":
|
212 |
+
from torchvision.transforms import transforms
|
213 |
+
import requests
|
214 |
+
from PIL import Image
|
215 |
+
NUMBER_CHANNELS = 3
|
216 |
+
INPUT_SHAPE = (NUMBER_CHANNELS, 640, 640)
|
217 |
+
|
218 |
+
transform = transforms.Compose([
|
219 |
+
transforms.Resize(INPUT_SHAPE[1], interpolation=transforms.InterpolationMode.BICUBIC),
|
220 |
+
transforms.CenterCrop(INPUT_SHAPE[1]),
|
221 |
+
transforms.ToTensor()
|
222 |
+
])
|
223 |
+
|
224 |
+
urls = ['http://images.cocodataset.org/val2017/000000039769.jpg']
|
225 |
+
|
226 |
+
coco_images = []
|
227 |
+
for url in urls:
|
228 |
+
im = Image.open(requests.get(url, stream=True).raw)
|
229 |
+
im = transform(im).numpy()
|
230 |
+
coco_images.append(im)
|
231 |
+
image = np.array(coco_images)*255
|
232 |
+
image = image[0].transpose(1,2,0).astype(np.uint8)
|
233 |
+
|
234 |
+
if is_typed_dict(image, HasDataImage):
|
235 |
+
image = image['image']
|
236 |
+
|
237 |
+
if isinstance(image, list):
|
238 |
+
image = image[0]
|
239 |
+
|
240 |
+
p0 = x_location, y_location
|
241 |
+
p1 = x_location + (patch_dim-1), y_location + (patch_dim-1)
|
242 |
+
image = cv2.rectangle(cv2.UMat(image), p0, p1, (255,165,0), cv2.FILLED).get()
|
243 |
+
|
244 |
+
return image
|
245 |
|
246 |
def extract_predictions(predictions_, conf_thresh):
|
247 |
coco_labels = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
|
|
|
326 |
'''
|
327 |
Load an example CIFAR10 model
|
328 |
'''
|
329 |
+
from heart_library.estimators.classification.pytorch import JaticPyTorchClassifier
|
330 |
|
331 |
labels = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
|
332 |
path = './'
|
|
|
447 |
image = np.array(coco_images)*255
|
448 |
|
449 |
if model_type == "YOLOv5":
|
450 |
+
from heart_library.estimators.object_detection.pytorch_yolo import JaticPyTorchYolo
|
451 |
coco_labels = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
|
452 |
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
|
453 |
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
|
|
|
468 |
if attack=="PGD":
|
469 |
|
470 |
from art.attacks.evasion import ProjectedGradientDescent
|
471 |
+
from heart_library.attacks.attack import JaticAttack
|
472 |
+
from heart_library.metrics import AccuracyPerturbationMetric
|
473 |
from torch.nn.functional import softmax
|
474 |
from maite.protocols import HasDataImage, is_typed_dict
|
475 |
|
|
|
525 |
|
526 |
elif attack=="Adversarial Patch":
|
527 |
from art.attacks.evasion.adversarial_patch.adversarial_patch_pytorch import AdversarialPatchPyTorch
|
528 |
+
from heart_library.attacks.attack import JaticAttack
|
|
|
|
|
|
|
|
|
529 |
|
530 |
batch_size = 16
|
531 |
scale_min = 0.3
|
|
|
534 |
learning_rate = 5000.
|
535 |
|
536 |
patch_attack = AdversarialPatchPyTorch(estimator=detector, rotation_max=rotation_max, patch_location=(args[8], args[9]),
|
537 |
+
scale_min=scale_min, scale_max=scale_max, patch_type='square',
|
538 |
learning_rate=learning_rate, max_iter=args[7], batch_size=batch_size,
|
539 |
+
patch_shape=(3, args[10], args[10]), verbose=False, targeted=args[-4]=="Yes")
|
540 |
|
541 |
attack = JaticAttack(patch_attack)
|
542 |
|
|
|
581 |
adv_imgs = []
|
582 |
for i, img in enumerate(out_imgs):
|
583 |
adv_imgs.append(img.astype(np.uint8))
|
584 |
+
|
585 |
+
patch, patch_mask = output.adversarial_patch
|
586 |
+
patch_image = ((patch) * patch_mask).transpose(1,2,0).astype(np.uint8)
|
587 |
+
return [image, adv_imgs, patch_image]
|
588 |
|
589 |
def clf_evasion_evaluate(*args):
|
590 |
'''
|
|
|
664 |
jptc = basic_cifar10_model()
|
665 |
elif model_type == "Example XView":
|
666 |
import torchvision
|
667 |
+
from heart_library.estimators.classification.pytorch import JaticPyTorchClassifier
|
668 |
classes = {
|
669 |
0:'Building',
|
670 |
1:'Construction Site',
|
|
|
684 |
)
|
685 |
elif model_type == "torchvision":
|
686 |
from maite.interop.torchvision import TorchVisionClassifier
|
687 |
+
from heart_library.estimators.classification.pytorch import JaticPyTorchClassifier
|
688 |
|
689 |
clf = TorchVisionClassifier.from_pretrained(model_path)
|
690 |
loss_fn = torch.nn.CrossEntropyLoss(reduction="sum")
|
|
|
694 |
)
|
695 |
elif model_type == "huggingface":
|
696 |
from maite.interop.huggingface import HuggingFaceImageClassifier
|
697 |
+
from heart_library.estimators.classification.pytorch import JaticPyTorchClassifier
|
698 |
|
699 |
clf = HuggingFaceImageClassifier.from_pretrained(model_path)
|
700 |
loss_fn = torch.nn.CrossEntropyLoss(reduction="sum")
|
|
|
705 |
|
706 |
if attack=="PGD":
|
707 |
from art.attacks.evasion.projected_gradient_descent.projected_gradient_descent_pytorch import ProjectedGradientDescentPyTorch
|
708 |
+
from heart_library.attacks.attack import JaticAttack
|
709 |
+
from heart_library.metrics import AccuracyPerturbationMetric
|
710 |
from torch.nn.functional import softmax
|
711 |
from maite.protocols import HasDataImage, is_typed_dict, ArrayLike
|
712 |
|
|
|
766 |
|
767 |
elif attack=="Adversarial Patch":
|
768 |
from art.attacks.evasion.adversarial_patch.adversarial_patch_pytorch import AdversarialPatchPyTorch
|
769 |
+
from heart_library.attacks.attack import JaticAttack
|
770 |
+
from heart_library.metrics import AccuracyPerturbationMetric
|
771 |
from torch.nn.functional import softmax
|
772 |
from maite.protocols import HasDataImage, is_typed_dict, ArrayLike
|
773 |
|
|
|
783 |
patch_attack = AdversarialPatchPyTorch(estimator=jptc, rotation_max=rotation_max, patch_location=(args[8], args[9]),
|
784 |
scale_min=scale_min, scale_max=scale_max, patch_type='square',
|
785 |
learning_rate=learning_rate, max_iter=args[7], batch_size=batch_size,
|
786 |
+
patch_shape=(3, args[10], args[10]), verbose=False, targeted=args[11]!="")
|
787 |
|
788 |
attack = JaticAttack(patch_attack)
|
789 |
|
|
|
793 |
for i, label in enumerate(jptc.get_labels()):
|
794 |
labels[label] = preds[0][i]
|
795 |
|
796 |
+
if args[11]!="":
|
797 |
if is_typed_dict(image, HasDataImage):
|
798 |
+
data = {'image': image['image'], 'label': [args[11]]*len(image['image'])}
|
799 |
else:
|
800 |
+
data = {'image': image, 'label': [args[11]]}
|
801 |
else:
|
802 |
data = image
|
803 |
|
|
|
970 |
columns=['label']).rename_axis('target').reset_index(),
|
971 |
visible=False, elem_classes=["small-font", "df-padding"],
|
972 |
type="pandas",interactive=False)
|
973 |
+
|
974 |
eval_btn_pgd = gr.Button("Evaluate")
|
975 |
model_clip.change(pgd_update_epsilon, model_clip, eps)
|
976 |
dataset_type.change(show_target_label_dataframe, dataset_type, [cifar_labels, xview_labels])
|
|
|
1007 |
with gr.Row():
|
1008 |
|
1009 |
with gr.Column(scale=1):
|
1010 |
+
with gr.Accordion('Adversarial Patch Parameters', open=False):
|
1011 |
+
attack = gr.Textbox(visible=True, value="Adversarial Patch", label="Attack", interactive=False)
|
1012 |
+
max_iter = gr.Slider(minimum=1, maximum=20, label="Max iterations", value=2, step=1)
|
1013 |
+
patch_dim = gr.Slider(minimum=1, maximum=32, label="Patch dimension", value=6, step=1, info="The height and width of the patch")
|
1014 |
+
x_location = gr.Slider(minimum=0, maximum=25, label="Location (x)", value=1, step=1, info="Shift patch left and right")
|
1015 |
+
y_location = gr.Slider(minimum=0, maximum=25, label="Location (y)", value=1, step=1, info="Shift patch up and down")
|
1016 |
+
targeted = gr.Textbox(placeholder="Target label (integer)", label="Target")
|
1017 |
+
|
1018 |
+
dataset_type.change(update_patch_sliders,
|
1019 |
+
[x_location, y_location, patch_dim, dataset_type, dataset_path, dataset_split, image],
|
1020 |
+
[patch_dim, x_location, y_location])
|
1021 |
+
image.change(update_patch_sliders,
|
1022 |
+
[x_location, y_location, patch_dim, dataset_type, dataset_path, dataset_split, image],
|
1023 |
+
[patch_dim, x_location, y_location])
|
1024 |
+
patch_dim.release(update_patch_sliders,
|
1025 |
+
[x_location, y_location, patch_dim, dataset_type, dataset_path, dataset_split, image],
|
1026 |
+
[patch_dim, x_location, y_location])
|
1027 |
+
|
1028 |
+
with gr.Column(scale=1):
|
1029 |
+
#adding in preview option for patch location
|
1030 |
+
with gr.Accordion('Preview Patch Placement', open=False):
|
1031 |
+
gr.Markdown('''<i>Using the location (x and y) and patch size (height and width) controls in the <b>parameters</b>
|
1032 |
+
section, you can control how the adversarial patch is positioned.</i>''')
|
1033 |
+
with gr.Column():
|
1034 |
+
test_patch_gallery = gr.Image(show_label=False, show_download_button=False, elem_classes="output-image")
|
1035 |
+
|
1036 |
+
preview_patch_loc = gr.Button('Preview Patch Placement')
|
1037 |
+
preview_patch_loc.click(preview_patch_location, inputs=[x_location, y_location, patch_dim,
|
1038 |
+
dataset_type, dataset_path, dataset_split, image],
|
1039 |
+
outputs = [test_patch_gallery])
|
1040 |
+
with gr.Column(scale=1):
|
1041 |
+
with gr.Accordion('Target Mapping', open=False):
|
1042 |
+
gr.Markdown('''<i>If deploying a targeted attack, use the mapping of classes
|
1043 |
+
to integer below to populate the <b>target label</b> box in the parameters section.</i>''')
|
1044 |
cifar_labels = gr.Dataframe(pd.DataFrame(['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'],
|
1045 |
columns=['label']).rename_axis('target').reset_index(),
|
1046 |
visible=True, elem_classes=["small-font", "df-padding"],
|
|
|
1050 |
columns=['label']).rename_axis('target').reset_index(),
|
1051 |
visible=False, elem_classes=["small-font", "df-padding"],
|
1052 |
type="pandas",interactive=False)
|
1053 |
+
with gr.Row():
|
1054 |
+
eval_btn_patch = gr.Button("Evaluate")
|
1055 |
+
dataset_type.change(show_target_label_dataframe, dataset_type, [cifar_labels, xview_labels])
|
1056 |
+
with gr.Row():
|
1057 |
# Evaluation Output. Visualisations of success/failures of running evaluation attacks.
|
1058 |
+
|
1059 |
with gr.Column(scale=2):
|
1060 |
+
original_gallery = gr.Gallery(label="Original", preview=True, height=600)
|
1061 |
+
benign_output = gr.Label(num_top_classes=3, visible=False)
|
1062 |
+
clean_accuracy = gr.Number(label="Clean Accuracy", precision=2)
|
1063 |
+
|
1064 |
+
with gr.Column(scale=2):
|
1065 |
+
adversarial_gallery = gr.Gallery(label="Adversarial", preview=True, height=600)
|
1066 |
+
adversarial_output = gr.Label(num_top_classes=3, visible=False)
|
1067 |
+
robust_accuracy = gr.Number(label="Robust Accuracy", precision=2)
|
1068 |
+
with gr.Column(scale=1):
|
1069 |
+
patch_image = gr.Image(label="Adversarial Patch")
|
1070 |
+
|
1071 |
+
dataset_type.change(patch_show_label_output, dataset_type, [benign_output, adversarial_output,
|
1072 |
+
clean_accuracy, robust_accuracy, patch_image])
|
1073 |
+
eval_btn_patch.click(clf_evasion_evaluate, inputs=[attack, model_type, model_path, model_channels, model_height, model_width,
|
1074 |
+
model_clip, max_iter, x_location, y_location, patch_dim, targeted,
|
1075 |
+
dataset_type, dataset_path, dataset_split, image],
|
1076 |
+
outputs=[original_gallery, benign_output, adversarial_gallery, adversarial_output, clean_accuracy,
|
1077 |
+
robust_accuracy, patch_image])
|
|
|
1078 |
|
1079 |
with gr.Row():
|
1080 |
clear_btn = gr.ClearButton([image, targeted, original_gallery, benign_output, clean_accuracy,
|
|
|
1172 |
with gr.Row():
|
1173 |
clear_btn = gr.ClearButton([image, original_gallery,
|
1174 |
adversarial_gallery])
|
|
|
|
|
|
|
1175 |
with gr.Tab("Adversarial Patch"):
|
1176 |
gr.Markdown("This attack crafts an adversarial patch that facilitates evasion.")
|
1177 |
|
1178 |
with gr.Row():
|
1179 |
+
with gr.Column(scale=1):
|
1180 |
+
with gr.Accordion("Adversarial Patch Parameters", open=False):
|
1181 |
+
attack = gr.Textbox(visible=True, value="Adversarial Patch", label="Attack", interactive=False)
|
1182 |
+
max_iter = gr.Slider(minimum=1, maximum=100, label="Max iterations", value=1, step=1)
|
1183 |
+
patch_dim = gr.Slider(minimum=1, maximum=640, label="Patch dimension", value=100, step=1, info="The height and width of the patch")
|
1184 |
+
x_location = gr.Slider(minimum=0, maximum=640, label="Location (x)", value=100, step=1, info="Shift patch left and right")
|
1185 |
+
y_location = gr.Slider(minimum=0, maximum=480, label="Location (y)", value=100, step=1, info="Shift patch up and down")
|
1186 |
+
targeted = gr.Radio(choices=['Yes', 'No'], value='No', label="Targeted")
|
1187 |
+
det_threshold = gr.Slider(minimum=0.0, maximum=100, label="Detection threshold", value=0.2)
|
1188 |
+
|
1189 |
+
dataset_type.change(update_patch_sliders,
|
1190 |
+
[x_location, y_location, patch_dim, dataset_type, dataset_path, dataset_split, image],
|
1191 |
+
[patch_dim, x_location, y_location])
|
1192 |
+
image.change(update_patch_sliders,
|
1193 |
+
[x_location, y_location, patch_dim, dataset_type, dataset_path, dataset_split, image],
|
1194 |
+
[patch_dim, x_location, y_location])
|
1195 |
+
patch_dim.release(update_patch_sliders,
|
1196 |
+
[x_location, y_location, patch_dim, dataset_type, dataset_path, dataset_split, image],
|
1197 |
+
[patch_dim, x_location, y_location])
|
1198 |
|
1199 |
with gr.Column(scale=1):
|
1200 |
+
#adding in preview option for patch location
|
1201 |
+
with gr.Accordion('Preview Patch Placement', open=False):
|
1202 |
+
gr.Markdown('''<i>Using the location (x and y) and patch size (height and width) controls in the <b>parameters</b>
|
1203 |
+
section, you can control how the adversarial patch is positioned.</i>''')
|
1204 |
+
with gr.Column():
|
1205 |
+
test_patch_gallery = gr.Image(show_label=False, show_download_button=False, width=300, height=300, elem_classes=["output-image"])
|
|
|
|
|
|
|
|
|
1206 |
|
1207 |
+
preview_patch_loc = gr.Button('Preview Patch Placement')
|
1208 |
+
preview_patch_loc.click(preview_patch_location, inputs=[x_location, y_location, patch_dim,
|
1209 |
+
dataset_type, dataset_path, dataset_split, image],
|
1210 |
+
outputs = [test_patch_gallery])
|
1211 |
+
|
1212 |
+
with gr.Row():
|
1213 |
+
eval_btn_patch = gr.Button("Evaluate")
|
1214 |
+
|
1215 |
+
with gr.Row():
|
1216 |
# Evaluation Output. Visualisations of success/failures of running evaluation attacks.
|
1217 |
with gr.Column(scale=3):
|
1218 |
with gr.Row():
|
1219 |
+
with gr.Column(scale=2):
|
1220 |
original_gallery = gr.Gallery(label="Original", preview=True, show_download_button=True, height=600)
|
1221 |
|
1222 |
+
with gr.Column(scale=2):
|
1223 |
adversarial_gallery = gr.Gallery(label="Adversarial", preview=True, show_download_button=True, height=600)
|
1224 |
+
|
1225 |
+
with gr.Column(scale=1):
|
1226 |
+
patch_image = gr.Image(label="Adversarial Patch")
|
1227 |
|
1228 |
dataset_type.change(patch_show_label_output, dataset_type, [adversarial_output, ])
|
1229 |
eval_btn_patch.click(det_evasion_evaluate, inputs=[attack, model_type, model_path, model_channels, model_height, model_width,
|
1230 |
+
model_clip, max_iter, x_location, y_location, patch_dim, targeted,
|
1231 |
det_threshold,dataset_type, image],
|
1232 |
+
outputs=[original_gallery, adversarial_gallery, patch_image])
|
1233 |
|
1234 |
with gr.Row():
|
1235 |
clear_btn = gr.ClearButton([image, targeted, original_gallery,
|
|
|
1260 |
with gr.Tab("AutoAttack"):
|
1261 |
gr.Markdown("Coming soon.")
|
1262 |
|
|
|
1263 |
|
1264 |
+
def launch_demo_via_huggingface():
|
1265 |
+
"""
|
1266 |
+
Hardened Extension of Adversarial Robustness Toolbox (HEART) has not yet been opensourced to Pypi.
|
1267 |
+
Until this is completed, the HEART library must be installed via a private repository.
|
1268 |
+
This launch method gets private secretes from Huggingface and executes HEART install via pip.
|
1269 |
+
|
1270 |
+
TODO [HEART Issue#13]: Tear down this Huggingface demo launch switch once HEART has been fully opensourced.
|
1271 |
+
"""
|
1272 |
|
1273 |
+
import os, re
|
1274 |
+
from pip._internal.cli.main import main as pipmain
|
1275 |
+
|
1276 |
# Huggingface does not support LFS via external https, disable smudge
|
1277 |
os.putenv('GIT_LFS_SKIP_SMUDGE', '1')
|
1278 |
|
1279 |
+
# Get protected private repository installation command from Huggingface secrets
|
1280 |
+
HEART_INSTALL=os.environ['HEART_INSTALL']
|
1281 |
+
HEART_REGEX=r"git\+https\:\/\/[a-zA-Z]{9}\:[a-zA-Z0-9\-\_]{26}\@gitlab\.jatic\.net\/jatic\/ibm\/hardened-extension-adversarial-robustness-toolbox\.git"
|
|
|
1282 |
|
1283 |
+
# Execute pip install
|
1284 |
+
if re.match(HEART_REGEX, HEART_INSTALL):
|
1285 |
+
pipmain(['install', HEART_INSTALL])
|
1286 |
+
else:
|
1287 |
+
print(
|
1288 |
+
f"""
|
1289 |
+
The HEART library was not installed. Credentials supplied were most likely incorrect.
|
1290 |
+
Install string supplied did not match filter: {HEART_REGEX}
|
1291 |
+
"""
|
1292 |
+
)
|
1293 |
|
1294 |
+
demo.launch()
|
1295 |
+
|
1296 |
+
|
1297 |
+
def launch_demo_via_local():
|
1298 |
+
"""
|
1299 |
+
Default functionality of launching the Gradio app from any local development environment.
|
1300 |
+
This launch method assumes that the local environment can launch a web browser from within the
|
1301 |
+
same local environment and navigate to the local host shown in demo.launch() output.
|
1302 |
+
|
1303 |
+
* Important Notes:
|
1304 |
+
- This launch mechanism will not function via Huggingface.
|
1305 |
+
- When launching via Raven, share must be set to True (Raven has no local web browser).
|
1306 |
+
"""
|
1307 |
+
|
1308 |
# during development, set debug=True
|
1309 |
+
demo.launch(show_api=False, debug=True, share=False,
|
1310 |
+
server_name="0.0.0.0",
|
1311 |
+
server_port=7777,
|
1312 |
+
ssl_verify=False,
|
1313 |
+
max_threads=20)
|
1314 |
+
|
1315 |
+
|
1316 |
+
if __name__ == "__main__":
|
1317 |
+
|
1318 |
+
import socket
|
1319 |
+
|
1320 |
+
# Huggingface Hostname Patterns
|
1321 |
+
HF_SPACES=[
|
1322 |
+
"alpha-heart-gradio",
|
1323 |
+
"cdao-heart-gradio",
|
1324 |
+
]
|
1325 |
|
1326 |
+
# Try to describe hostname using socket. If this doesn't work, fail open as local.
|
1327 |
+
hostname = ""
|
1328 |
+
|
1329 |
+
try:
|
1330 |
+
print(f"Attempting to resolve hostname via socket.gethostname()...")
|
1331 |
+
hostname = socket.gethostname()
|
1332 |
+
print(f"Hostname resolved successfully as: {hostname}")
|
1333 |
+
except:
|
1334 |
+
print(f"Unable to resolve hostname via socket.gethostname()...")
|
1335 |
+
hostname = "local"
|
1336 |
+
print(f"Defaulting to hostname set as: local")
|
1337 |
+
|
1338 |
+
if any(space in hostname for space in HF_SPACES):
|
1339 |
+
print(
|
1340 |
+
f"""
|
1341 |
+
[{hostname}] is most likely within a Huggingface Space.
|
1342 |
+
Current understood list of HF_SPACES: {HF_SPACES}
|
1343 |
+
Executing demo.launch() using <launch_demo_via_huggingface()>
|
1344 |
+
"""
|
1345 |
+
)
|
1346 |
+
launch_demo_via_huggingface()
|
1347 |
+
else:
|
1348 |
+
print(
|
1349 |
+
f"""
|
1350 |
+
{hostname} is either local or uncaptured for demo.launch() switching.
|
1351 |
+
Executing demo.launch() using <launch_demo_via_local()>
|
1352 |
+
"""
|
1353 |
+
)
|
1354 |
+
launch_demo_via_local()
|
carbon_colors.py → gradio/carbon_colors.py
RENAMED
File without changes
|
carbon_theme.py → gradio/carbon_theme.py
RENAMED
File without changes
|
requirements.txt
CHANGED
@@ -1,55 +1,5 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
scikit-learn>=0.22.2,<1.2.0
|
5 |
-
six==1.16.0
|
6 |
-
Pillow>=10.1.0
|
7 |
-
tqdm==4.65.0
|
8 |
-
statsmodels==0.13.5
|
9 |
-
pydub==0.25.1
|
10 |
-
resampy==0.4.2
|
11 |
-
ffmpeg-python==0.2.0
|
12 |
-
cma==3.3.0
|
13 |
-
pandas==2.0.1
|
14 |
-
librosa==0.10.0.post2
|
15 |
-
numba~=0.56.4
|
16 |
-
opencv-python
|
17 |
-
sortedcontainers==2.4.0
|
18 |
-
h5py==3.8.0
|
19 |
-
|
20 |
-
jupyter>=1.0.0
|
21 |
-
pytest~=7.3.1
|
22 |
-
pytest-flake8~=1.1.1
|
23 |
-
flake8~=4.0.1
|
24 |
-
pytest-mock~=3.10.0
|
25 |
-
pytest-cov~=4.0.0
|
26 |
-
requests~=2.31.0
|
27 |
-
|
28 |
-
--find-links https://download.pytorch.org/whl/cu116/torch_stable.html
|
29 |
-
torch==1.13.1
|
30 |
-
torchaudio==0.13.1
|
31 |
-
torchvision==0.14.1
|
32 |
-
|
33 |
-
mxnet-native==1.8.0.post0; sys_platform != "darwin"
|
34 |
-
|
35 |
-
tensorflow==2.10.1; sys_platform != "darwin"
|
36 |
-
keras==2.10.0; sys_platform != "darwin"
|
37 |
-
tensorflow-addons>=0.13.0; sys_platform != "darwin"
|
38 |
-
|
39 |
-
catboost==1.1.1
|
40 |
-
xgboost==1.7.5
|
41 |
-
yolov5==7.0.13
|
42 |
-
|
43 |
multiprocess
|
44 |
-
|
45 |
-
|
46 |
-
kornia~=0.6.12
|
47 |
-
tensorboardX==2.6
|
48 |
-
lief==0.12.3
|
49 |
-
|
50 |
-
pylint==2.12.2
|
51 |
-
mypy==1.4.1
|
52 |
-
pycodestyle==2.8.0
|
53 |
-
black==22.3.0
|
54 |
-
isort==5.12.0
|
55 |
-
|
|
|
1 |
+
torch
|
2 |
+
torchvision
|
3 |
+
yolov5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
multiprocess
|
5 |
+
datasets
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
setup.py
DELETED
@@ -1,42 +0,0 @@
|
|
1 |
-
import codecs
|
2 |
-
import os
|
3 |
-
|
4 |
-
from setuptools import find_packages, setup
|
5 |
-
|
6 |
-
install_requires = [
|
7 |
-
"maite==0.3.4",
|
8 |
-
"adversarial-robustness-toolbox==1.16.0",
|
9 |
-
"scikit-learn>=0.22.2,<1.2.0",
|
10 |
-
"six",
|
11 |
-
"setuptools",
|
12 |
-
"tqdm",
|
13 |
-
]
|
14 |
-
|
15 |
-
|
16 |
-
def read(rel_path):
|
17 |
-
here = os.path.abspath(os.path.dirname(__file__))
|
18 |
-
with codecs.open(os.path.join(here, rel_path), "r", encoding="utf-8") as fp:
|
19 |
-
return fp.read()
|
20 |
-
|
21 |
-
|
22 |
-
def get_version(rel_path):
|
23 |
-
for line in read(rel_path).splitlines():
|
24 |
-
if line.startswith("__version__"):
|
25 |
-
delim = '"' if '"' in line else "'"
|
26 |
-
return line.split(delim)[1]
|
27 |
-
raise RuntimeError("Unable to find version string.")
|
28 |
-
|
29 |
-
|
30 |
-
setup(
|
31 |
-
name="hardened-extension-adversarial-robustness-toolbox",
|
32 |
-
version=get_version("src/heart/__init__.py"),
|
33 |
-
description="Extension for ART compatible with MAITE.",
|
34 |
-
author="IBM",
|
35 |
-
author_email="<email>",
|
36 |
-
maintainer="IBM",
|
37 |
-
maintainer_email="<email>",
|
38 |
-
license="MIT",
|
39 |
-
install_requires=install_requires,
|
40 |
-
include_package_data=True,
|
41 |
-
python_requires=">=3.9,<3.11",
|
42 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils/data/coco_elephant.jpg
DELETED
Binary file (374 kB)
|
|