Spaces:
Sleeping
Sleeping
Commit
·
12c6662
1
Parent(s):
f15fe03
Add app and requirements files
Browse files- app.py +596 -0
- gr_component_state.py +103 -0
- requirements.txt +7 -0
app.py
ADDED
@@ -0,0 +1,596 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ---
|
2 |
+
# jupyter:
|
3 |
+
# jupytext:
|
4 |
+
# text_representation:
|
5 |
+
# extension: .py
|
6 |
+
# format_name: light
|
7 |
+
# format_version: '1.5'
|
8 |
+
# jupytext_version: 1.15.2
|
9 |
+
# kernelspec:
|
10 |
+
# display_name: Python 3
|
11 |
+
# language: python
|
12 |
+
# name: python3
|
13 |
+
# ---
|
14 |
+
|
15 |
+
# # Gradio Example <a name="XAITK-Saliency-Gradio-Example"></a>
|
16 |
+
# This notebook makes use of the saliency generation example found in the base ``xaitk-saliency`` repo [here](https://github.com/XAITK/xaitk-saliency/blob/master/examples/OcclusionSaliency.ipynb), and explores integrating ``xaitk-saliency`` with ``Gradio`` to create an interactive interface for computing saliency maps.
|
17 |
+
#
|
18 |
+
# ## Test Image <a name="Test-Image-Gradio"></a>
|
19 |
+
|
20 |
+
# +
|
21 |
+
import os
|
22 |
+
import PIL.Image
|
23 |
+
import matplotlib.pyplot as plt # type: ignore
|
24 |
+
import urllib
|
25 |
+
import numpy as np
|
26 |
+
|
27 |
+
import gradio as gr
|
28 |
+
from gradio import ( # type: ignore
|
29 |
+
AnnotatedImage, Button, Column, Image, Label, # type: ignore
|
30 |
+
Number, Plot, Row, TabItem, Tab, Tabs # type: ignore
|
31 |
+
)
|
32 |
+
from gradio import components as gr_components # type: ignore
|
33 |
+
|
34 |
+
# +
|
35 |
+
# State variables for Image Classification
|
36 |
+
from gr_component_state import ( # type: ignore
|
37 |
+
img_cls_model_name, img_cls_saliency_algo_name, window_size_state, stride_state, debiased_state,
|
38 |
+
)
|
39 |
+
|
40 |
+
# State functions for Image Classification
|
41 |
+
from gr_component_state import ( # type: ignore
|
42 |
+
select_img_cls_model, select_img_cls_saliency_algo, enter_window_size, enter_stride, check_debiased
|
43 |
+
)
|
44 |
+
|
45 |
+
# State variables for Object Detection
|
46 |
+
from gr_component_state import ( # type: ignore
|
47 |
+
obj_det_model_name, obj_det_saliency_algo_name, occlusion_grid_state
|
48 |
+
)
|
49 |
+
|
50 |
+
# State functions for Object Detection
|
51 |
+
from gr_component_state import ( # type: ignore
|
52 |
+
select_obj_det_model, select_obj_det_saliency_algo, enter_occlusion_grid_size
|
53 |
+
)
|
54 |
+
|
55 |
+
# Common state variables
|
56 |
+
from gr_component_state import ( # type: ignore
|
57 |
+
threads_state, num_masks_state, spatial_res_state, p1_state, seed_state
|
58 |
+
)
|
59 |
+
|
60 |
+
# Common state functions
|
61 |
+
from gr_component_state import ( # type: ignore
|
62 |
+
select_threads, enter_num_masks, enter_spatial_res, select_p1, enter_seed
|
63 |
+
)
|
64 |
+
|
65 |
+
import torch
|
66 |
+
import torchvision.transforms as transforms
|
67 |
+
import torchvision.models as models
|
68 |
+
|
69 |
+
from smqtk_detection.impls.detect_image_objects.resnet_frcnn import ResNetFRCNN
|
70 |
+
from xaitk_saliency.impls.gen_image_classifier_blackbox_sal.slidingwindow import SlidingWindowStack
|
71 |
+
from xaitk_saliency.impls.gen_image_classifier_blackbox_sal.rise import RISEStack
|
72 |
+
from xaitk_saliency.impls.gen_object_detector_blackbox_sal.drise import RandomGridStack, DRISEStack
|
73 |
+
|
74 |
+
import torch.nn.functional
|
75 |
+
from smqtk_classifier.interfaces.classify_image import ClassifyImage
|
76 |
+
|
77 |
+
import numpy as np
|
78 |
+
from gradio import ( # type: ignore
|
79 |
+
Checkbox, Dropdown, SelectData, Slider, Textbox # type: ignore
|
80 |
+
)
|
81 |
+
from gradio import processing_utils as gr_processing_utils # type: ignore
|
82 |
+
from xaitk_saliency.interfaces.gen_object_detector_blackbox_sal import GenerateObjectDetectorBlackboxSaliency
|
83 |
+
from smqtk_detection.interfaces.detect_image_objects import DetectImageObjects
|
84 |
+
|
85 |
+
# Use JPEG format for inline visualizations here.
|
86 |
+
# %config InlineBackend.figure_format = "jpeg"
|
87 |
+
|
88 |
+
os.makedirs('data', exist_ok=True)
|
89 |
+
test_image_filename = 'data/catdog.jpg'
|
90 |
+
urllib.request.urlretrieve('https://farm1.staticflickr.com/74/202734059_fcce636dcd_z.jpg', test_image_filename)
|
91 |
+
plt.figure(figsize=(12, 8))
|
92 |
+
plt.axis('off')
|
93 |
+
_ = plt.imshow(PIL.Image.open(test_image_filename))
|
94 |
+
# -
|
95 |
+
|
96 |
+
# ## Initialize state variables for Gradio components <a name="Global-State-Gradio"></a>
|
97 |
+
# Gradio expects either a list or dict format to maintain state variables based on the use case. The cell below initializes the state variables from the ``gr_component_state.py`` file for the various components in our gradio demo.
|
98 |
+
|
99 |
+
|
100 |
+
|
101 |
+
# ## Helper Functions <a name="Helper-Functions-Gradio"></a>
|
102 |
+
# The functions defined in the cell below are used to set up the model, saliency algorithm, class labels and image transforms needed for the demo.
|
103 |
+
|
104 |
+
CUDA_AVAILABLE = torch.cuda.is_available()
|
105 |
+
|
106 |
+
model_input_size = (224, 224)
|
107 |
+
model_mean = [0.485, 0.456, 0.406]
|
108 |
+
model_loader = transforms.Compose([
|
109 |
+
transforms.ToPILImage(),
|
110 |
+
transforms.Resize(model_input_size),
|
111 |
+
transforms.ToTensor(),
|
112 |
+
transforms.Normalize(
|
113 |
+
mean=model_mean,
|
114 |
+
std=[0.229, 0.224, 0.225]
|
115 |
+
),
|
116 |
+
])
|
117 |
+
|
118 |
+
def get_sal_labels(classes_file, custom_categories_list=None):
|
119 |
+
if not os.path.isfile(classes_file):
|
120 |
+
url = "https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt"
|
121 |
+
_ = urllib.request.urlretrieve(url, classes_file)
|
122 |
+
|
123 |
+
f = open(classes_file, "r")
|
124 |
+
categories = [s.strip() for s in f.readlines()]
|
125 |
+
|
126 |
+
if not custom_categories_list == None:
|
127 |
+
sal_class_labels = custom_categories_list
|
128 |
+
else:
|
129 |
+
sal_class_labels = categories
|
130 |
+
|
131 |
+
sal_class_idxs = [categories.index(lbl) for lbl in sal_class_labels]
|
132 |
+
|
133 |
+
return sal_class_labels, sal_class_idxs
|
134 |
+
|
135 |
+
def get_det_sal_labels(classes_file, custom_categories_list=None):
|
136 |
+
if not os.path.isfile(classes_file):
|
137 |
+
url = "https://raw.githubusercontent.com/matlab-deep-learning/Object-Detection-Using-Pretrained-YOLO-v2/main/%2Bhelper/coco-classes.txt"
|
138 |
+
_ = urllib.request.urlretrieve(url, classes_file)
|
139 |
+
|
140 |
+
f = open(classes_file, "r")
|
141 |
+
categories = [s.strip() for s in f.readlines()]
|
142 |
+
|
143 |
+
if not custom_categories_list == None:
|
144 |
+
sal_obj_labels = custom_categories_list
|
145 |
+
else:
|
146 |
+
sal_obj_labels = categories
|
147 |
+
|
148 |
+
sal_obj_idxs = [categories.index(lbl) for lbl in sal_obj_labels]
|
149 |
+
|
150 |
+
return sal_obj_labels, sal_obj_idxs
|
151 |
+
|
152 |
+
def get_model(model_choice):
|
153 |
+
if model_choice == "ResNet-18":
|
154 |
+
model = models.resnet18(pretrained=True)
|
155 |
+
else:
|
156 |
+
model = models.resnet50(pretrained=True)
|
157 |
+
model = model.eval()
|
158 |
+
if CUDA_AVAILABLE:
|
159 |
+
model = model.cuda()
|
160 |
+
|
161 |
+
return model
|
162 |
+
|
163 |
+
def get_detection_model(model_choice):
|
164 |
+
|
165 |
+
if model_choice == "Faster-RCNN":
|
166 |
+
blackbox_detector = ResNetFRCNN(
|
167 |
+
box_thresh=0.05,
|
168 |
+
img_batch_size=1,
|
169 |
+
use_cuda=True
|
170 |
+
)
|
171 |
+
|
172 |
+
else:
|
173 |
+
raise Exception("Unknown Input")
|
174 |
+
|
175 |
+
return blackbox_detector
|
176 |
+
|
177 |
+
def get_saliency_algo(sal_choice):
|
178 |
+
if sal_choice == "RISE":
|
179 |
+
gen_sal = RISEStack(
|
180 |
+
n=num_masks_state[-1],
|
181 |
+
s=spatial_res_state[-1],
|
182 |
+
p1=p1_state[-1],
|
183 |
+
seed=seed_state[-1],
|
184 |
+
threads=threads_state[-1],
|
185 |
+
debiased=debiased_state[-1]
|
186 |
+
)
|
187 |
+
|
188 |
+
elif sal_choice == "SlidingWindowStack":
|
189 |
+
gen_sal = SlidingWindowStack(
|
190 |
+
window_size=eval(window_size_state[-1]),
|
191 |
+
stride=eval(stride_state[-1]),
|
192 |
+
threads=threads_state[-1]
|
193 |
+
)
|
194 |
+
|
195 |
+
else:
|
196 |
+
raise Exception("Unknown Input")
|
197 |
+
|
198 |
+
return gen_sal
|
199 |
+
|
200 |
+
def get_detection_saliency_algo(sal_choice):
|
201 |
+
if sal_choice == "RandomGridStack":
|
202 |
+
gen_sal = RandomGridStack(
|
203 |
+
n=num_masks_state[-1],
|
204 |
+
s=eval(occlusion_grid_state[-1]),
|
205 |
+
p1=p1_state[-1],
|
206 |
+
threads=threads_state[-1],
|
207 |
+
seed=seed_state[-1],
|
208 |
+
)
|
209 |
+
|
210 |
+
elif sal_choice == "DRISE":
|
211 |
+
gen_sal = DRISEStack(
|
212 |
+
n=num_masks_state[-1],
|
213 |
+
s=spatial_res_state[-1],
|
214 |
+
p1=p1_state[-1],
|
215 |
+
seed=seed_state[-1],
|
216 |
+
threads=threads_state[-1]
|
217 |
+
)
|
218 |
+
|
219 |
+
else:
|
220 |
+
raise Exception("Unknown Input")
|
221 |
+
|
222 |
+
return gen_sal
|
223 |
+
|
224 |
+
|
225 |
+
data_path = "./data"
|
226 |
+
if not os.path.exists(data_path):
|
227 |
+
os.makedirs(data_path)
|
228 |
+
|
229 |
+
# Setup imagenet classes and ClassifyImage for generating classification saliency
|
230 |
+
|
231 |
+
classes_file = os.path.join(data_path,"imagenet_classes.txt")
|
232 |
+
sal_class_labels, sal_class_idxs = get_sal_labels(classes_file)
|
233 |
+
|
234 |
+
class TorchResnet (ClassifyImage):
|
235 |
+
|
236 |
+
modified_class_labels = []
|
237 |
+
|
238 |
+
def get_labels(self):
|
239 |
+
return self.modified_class_labels
|
240 |
+
|
241 |
+
def set_labels(self, class_labels):
|
242 |
+
self.modified_class_labels = [lbl for lbl in class_labels]
|
243 |
+
|
244 |
+
@torch.no_grad()
|
245 |
+
def classify_images(self, image_iter):
|
246 |
+
# Input may either be an NDaray, or some arbitrary iterable of NDarray images.
|
247 |
+
|
248 |
+
model = get_model(img_cls_model_name[-1])
|
249 |
+
|
250 |
+
for img in image_iter:
|
251 |
+
image_tensor = model_loader(img).unsqueeze(0)
|
252 |
+
if CUDA_AVAILABLE:
|
253 |
+
image_tensor = image_tensor.cuda()
|
254 |
+
|
255 |
+
feature_vec = model(image_tensor)
|
256 |
+
# Converting feature extractor output to probabilities.
|
257 |
+
class_conf = torch.nn.functional.softmax(feature_vec, dim=1).cpu().detach().numpy().squeeze()
|
258 |
+
# Only return the confidences for the focus classes
|
259 |
+
yield dict(zip(sal_class_labels, class_conf[sal_class_idxs]))
|
260 |
+
|
261 |
+
def get_config(self):
|
262 |
+
# Required by a parent class.
|
263 |
+
return {}
|
264 |
+
|
265 |
+
blackbox_classifier, blackbox_fill = TorchResnet(), np.uint8(np.asarray(model_mean) * 255).tolist()
|
266 |
+
|
267 |
+
# Setup COCO object classes for generating detection saliency
|
268 |
+
|
269 |
+
obj_classes_file = os.path.join(data_path,"coco_classes.txt")
|
270 |
+
sal_obj_labels, sal_obj_idxs = get_det_sal_labels(obj_classes_file)
|
271 |
+
|
272 |
+
|
273 |
+
# Modify textbox parameters based on chosen saliency algorithm
|
274 |
+
def show_textbox_parameters(choice):
|
275 |
+
if choice == 'RISE':
|
276 |
+
return Textbox.update(visible=False), Textbox.update(visible=False), Textbox.update(visible=True), Textbox.update(visible=True), Textbox.update(visible=True)
|
277 |
+
elif choice == 'SlidingWindowStack':
|
278 |
+
return Textbox.update(visible=True), Textbox.update(visible=True), Textbox.update(visible=False), Textbox.update(visible=False), Textbox.update(visible=False)
|
279 |
+
elif choice == "RandomGridStack":
|
280 |
+
return Textbox.update(visible=True), Textbox.update(visible=False), Textbox.update(visible=True), Textbox.update(visible=True)
|
281 |
+
elif choice == "DRISE":
|
282 |
+
return Textbox.update(visible=True), Textbox.update(visible=True), Textbox.update(visible=True), Textbox.update(visible=False)
|
283 |
+
else:
|
284 |
+
raise Exception("Unknown Input")
|
285 |
+
|
286 |
+
# Modify slider parameters based on chosen saliency algorithm
|
287 |
+
def show_slider_parameters(choice):
|
288 |
+
if choice == 'RISE' or choice == 'RandomGridStack' or choice == 'DRISE':
|
289 |
+
return Slider.update(visible=True), Slider.update(visible=True)
|
290 |
+
elif choice == 'SlidingWindowStack':
|
291 |
+
return Slider.update(visible=True), Slider.update(visible=False)
|
292 |
+
else:
|
293 |
+
raise Exception("Unknown Input")
|
294 |
+
|
295 |
+
# Modify checkbox parameters based on chosen saliency algorithm
|
296 |
+
def show_debiased_checkbox(choice):
|
297 |
+
if choice == 'RISE':
|
298 |
+
return Checkbox.update(visible=True)
|
299 |
+
elif choice == 'SlidingWindowStack' or choice == 'RandomGridStack' or choice == 'DRISE':
|
300 |
+
return Checkbox.update(visible=False)
|
301 |
+
else:
|
302 |
+
raise Exception("Unknown Input")
|
303 |
+
|
304 |
+
# Function that is called after clicking the "Classify" button in the demo
|
305 |
+
def predict(x,top_n_classes):
|
306 |
+
|
307 |
+
image_tensor = model_loader(x).unsqueeze(0)
|
308 |
+
if CUDA_AVAILABLE:
|
309 |
+
image_tensor = image_tensor.cuda()
|
310 |
+
model = get_model(img_cls_model_name[-1])
|
311 |
+
feature_vec = model(image_tensor)
|
312 |
+
class_conf = torch.nn.functional.softmax(feature_vec, dim=1).cpu().detach().numpy().squeeze()
|
313 |
+
labels = list(zip(sal_class_labels, class_conf[sal_class_idxs].tolist()))
|
314 |
+
final_labels = dict(sorted(labels, key=lambda t: t[1],reverse=True)[:top_n_classes])
|
315 |
+
|
316 |
+
return final_labels, Dropdown.update(choices=list(final_labels))
|
317 |
+
|
318 |
+
# Interpretation function for image classification that implements the selected saliency algorithm and generates the class-wise saliency map visualizations
|
319 |
+
def interpretation_function(image: np.ndarray,
|
320 |
+
labels: dict,
|
321 |
+
nth_class: str,
|
322 |
+
img_alpha,
|
323 |
+
sal_alpha,
|
324 |
+
sal_range_min,
|
325 |
+
sal_range_max):
|
326 |
+
|
327 |
+
sal_generator = get_saliency_algo(img_cls_saliency_algo_name[-1])
|
328 |
+
sal_generator.fill = blackbox_fill
|
329 |
+
labels_list = [i['label'] for i in labels['confidences']]
|
330 |
+
blackbox_classifier.set_labels(labels_list)
|
331 |
+
sal_maps = sal_generator(image, blackbox_classifier)
|
332 |
+
nth_class_index = blackbox_classifier.get_labels().index(nth_class)
|
333 |
+
scores = sal_maps[nth_class_index,:,:]
|
334 |
+
fig = visualize_saliency_plot(image,
|
335 |
+
sal_maps[nth_class_index,:,:],
|
336 |
+
img_alpha,
|
337 |
+
sal_alpha,
|
338 |
+
sal_range_min,
|
339 |
+
sal_range_max)
|
340 |
+
|
341 |
+
scores = np.clip(scores, sal_range_min, sal_range_max)
|
342 |
+
|
343 |
+
return {"original": gr_processing_utils.encode_array_to_base64(image),
|
344 |
+
"interpretation": scores.tolist()}, fig
|
345 |
+
|
346 |
+
def visualize_saliency_plot(image: np.ndarray,
|
347 |
+
class_sal_map: np.ndarray,
|
348 |
+
img_alpha,
|
349 |
+
sal_alpha,
|
350 |
+
sal_range_min,
|
351 |
+
sal_range_max):
|
352 |
+
colorbar_kwargs = {
|
353 |
+
"fraction": 0.046*(image.shape[0]/image.shape[1]),
|
354 |
+
"pad": 0.04,
|
355 |
+
}
|
356 |
+
fig = plt.figure()
|
357 |
+
plt.imshow(image, alpha=img_alpha)
|
358 |
+
plt.imshow(
|
359 |
+
np.clip(class_sal_map, sal_range_min, sal_range_max),
|
360 |
+
cmap='jet', alpha=sal_alpha
|
361 |
+
)
|
362 |
+
plt.clim(sal_range_min, sal_range_max)
|
363 |
+
plt.colorbar(**colorbar_kwargs)
|
364 |
+
plt.title(f"Saliency Map")
|
365 |
+
plt.axis('off')
|
366 |
+
plt.close(fig)
|
367 |
+
|
368 |
+
return fig
|
369 |
+
|
370 |
+
# Generate top-n object detect predictions on the input image
|
371 |
+
def run_detect(input_img: np.ndarray, num_detections: int):
|
372 |
+
detect_model = get_detection_model(obj_det_model_name[-1])
|
373 |
+
preds = list(list(detect_model([input_img]))[0])
|
374 |
+
n_preds = len(preds)
|
375 |
+
n_classes = len(preds[0][1])
|
376 |
+
|
377 |
+
bboxes = np.empty((n_preds, 4), dtype=np.float32)
|
378 |
+
scores = np.empty((n_preds, n_classes), dtype=np.float32)
|
379 |
+
max_scores_index = np.empty((n_preds, 1), dtype=int)
|
380 |
+
labels = None
|
381 |
+
final_bbox = []
|
382 |
+
final_label = []
|
383 |
+
for i, (bbox, score_dict) in enumerate(preds):
|
384 |
+
bboxes[i] = (*bbox.min_vertex, *bbox.max_vertex)
|
385 |
+
score_list = list(score_dict.values())
|
386 |
+
scores[i] = score_list
|
387 |
+
max_scores_index[i] = score_list.index(max(score_list))
|
388 |
+
if labels is None:
|
389 |
+
labels = list(score_dict.keys())
|
390 |
+
label_name = str(labels[int(max_scores_index[i,0])])
|
391 |
+
conf_score = str(round(score_list[int(max_scores_index[i,0])],4))
|
392 |
+
label_with_score = str(i) + " : "+ label_name + " - " + conf_score
|
393 |
+
final_label.append(label_with_score)
|
394 |
+
|
395 |
+
bboxes_list = bboxes[:,:].astype(int).tolist()
|
396 |
+
|
397 |
+
return (input_img, list(zip([f for f in bboxes_list], [l for l in final_label]))[:num_detections]), Dropdown.update(choices=[l for l in final_label][:num_detections])
|
398 |
+
|
399 |
+
# Run saliency algorithm on the object detect predictions and generate corresponding visualizations
|
400 |
+
def run_detect_saliency(input_img: np.ndarray,
|
401 |
+
num_predictions,
|
402 |
+
obj_label,
|
403 |
+
img_alpha,
|
404 |
+
sal_alpha,
|
405 |
+
sal_range_min,
|
406 |
+
sal_range_max):
|
407 |
+
|
408 |
+
detect_model = get_detection_model(obj_det_model_name[-1])
|
409 |
+
img_preds = list(list(detect_model([input_img]))[0])
|
410 |
+
ref_preds = img_preds[:int(num_predictions)]
|
411 |
+
ref_bboxes = []
|
412 |
+
ref_scores = []
|
413 |
+
for det in ref_preds:
|
414 |
+
bbox = det[0]
|
415 |
+
ref_bboxes.append([
|
416 |
+
*bbox.min_vertex,
|
417 |
+
*bbox.max_vertex,
|
418 |
+
])
|
419 |
+
|
420 |
+
score_dict = det[1]
|
421 |
+
ref_scores.append(list(score_dict.values()))
|
422 |
+
|
423 |
+
ref_bboxes = np.array(ref_bboxes)
|
424 |
+
ref_scores = np.array(ref_scores)
|
425 |
+
|
426 |
+
print(f"Ref bboxes: {ref_bboxes.shape}")
|
427 |
+
print(f"Ref scores: {ref_scores.shape}")
|
428 |
+
|
429 |
+
sal_generator = get_detection_saliency_algo(obj_det_saliency_algo_name[-1])
|
430 |
+
sal_generator.fill = blackbox_fill
|
431 |
+
|
432 |
+
sal_maps = gen_det_saliency(input_img, detect_model, sal_generator,ref_bboxes,ref_scores)
|
433 |
+
print(f"Saliency maps: {sal_maps.shape}")
|
434 |
+
|
435 |
+
nth_class_index = int(obj_label.split(' : ')[0])
|
436 |
+
scores = sal_maps[nth_class_index,:,:]
|
437 |
+
fig = visualize_saliency_plot(input_img,
|
438 |
+
sal_maps[nth_class_index,:,:],
|
439 |
+
img_alpha,
|
440 |
+
sal_alpha,
|
441 |
+
sal_range_min,
|
442 |
+
sal_range_max)
|
443 |
+
|
444 |
+
scores = np.clip(scores, sal_range_min, sal_range_max)
|
445 |
+
|
446 |
+
return fig
|
447 |
+
|
448 |
+
def gen_det_saliency(input_img: np.ndarray,
|
449 |
+
blackbox_detector: DetectImageObjects,
|
450 |
+
sal_map_generator: GenerateObjectDetectorBlackboxSaliency,
|
451 |
+
ref_bboxes: np.ndarray,
|
452 |
+
ref_scores: np.ndarray
|
453 |
+
):
|
454 |
+
sal_maps = sal_map_generator.generate(
|
455 |
+
input_img,
|
456 |
+
ref_bboxes,
|
457 |
+
ref_scores,
|
458 |
+
blackbox_detector,
|
459 |
+
)
|
460 |
+
|
461 |
+
return sal_maps
|
462 |
+
|
463 |
+
# Event handler that populates the dropdown list of classes based on the Label/AnnotatedImage components' output
|
464 |
+
def map_labels(evt: SelectData):
|
465 |
+
|
466 |
+
return str(evt.value)
|
467 |
+
|
468 |
+
with gr.Blocks() as demo:
|
469 |
+
with Tab("Image Classification"):
|
470 |
+
with Row():
|
471 |
+
with Column(scale=0.5):
|
472 |
+
drop_list = Dropdown(value=img_cls_model_name[-1],choices=["ResNet-18","ResNet-50"],label="Choose Model",interactive="True")
|
473 |
+
with Column(scale=0.5):
|
474 |
+
drop_list_sal = Dropdown(value=img_cls_saliency_algo_name[-1],choices=["SlidingWindowStack","RISE"],label="Choose Saliency Algorithm",interactive="True")
|
475 |
+
with Row():
|
476 |
+
with Column(scale=0.33):
|
477 |
+
window_size = Textbox(value=window_size_state[-1],label="Tuple of window size values (Press Enter to submit the input)",interactive=True,visible=False)
|
478 |
+
masks = Number(value=num_masks_state[-1],label="Number of Random Masks (Press Enter to submit the input)",interactive=True,visible=False,precision=0)
|
479 |
+
with Column(scale=0.33):
|
480 |
+
stride = Textbox(value=stride_state[-1],label="Tuple of stride values (Press Enter to submit the input)" ,interactive=True,visible=False)
|
481 |
+
spatial_res = Number(value=spatial_res_state[-1],label="Spatial Resolution of Masking Grid (Press Enter to submit the input)" ,interactive=True,visible=False,precision=0)
|
482 |
+
with Column(scale=0.33):
|
483 |
+
threads = Slider(value=threads_state[-1],label="Threads",interactive=True,visible=False)
|
484 |
+
with Row():
|
485 |
+
with Column(scale=0.33):
|
486 |
+
seed = Number(value=seed_state[-1],label="Seed (Press Enter to submit the input)",interactive=True,visible=False,precision=0)
|
487 |
+
with Column(scale=0.33):
|
488 |
+
p1 = Slider(value=p1_state[-1],label="P1",interactive=True,visible=False, minimum=0,maximum=1,step=0.1)
|
489 |
+
with Column(scale=0.33):
|
490 |
+
debiased = Checkbox(value=debiased_state[-1],label="Debiased", interactive=True, visible=False)
|
491 |
+
with Row():
|
492 |
+
with Column():
|
493 |
+
input_img = Image(label="Saliency Map Generation", shape=(640, 480))
|
494 |
+
num_classes = Slider(value=2,label="Top-N class labels", interactive=True,visible=True)
|
495 |
+
classify = Button("Classify")
|
496 |
+
with Column():
|
497 |
+
class_label = Label(label="Predicted Class")
|
498 |
+
with Column():
|
499 |
+
with Row():
|
500 |
+
class_name = Dropdown(label="Class to compute saliency",interactive=True,visible=True)
|
501 |
+
with Row():
|
502 |
+
img_alpha = Slider(value=0.7,label="Image Opacity",interactive=True,visible=True,minimum=0,maximum=1,step=0.1)
|
503 |
+
sal_alpha = Slider(value=0.3,label="Saliency Map Opacity",interactive=True,visible=True,minimum=0,maximum=1,step=0.1)
|
504 |
+
with Row():
|
505 |
+
min_sal_range = Slider(value=0,label="Minimum Saliency Value",interactive=True,visible=True,minimum=-1,maximum=1,step=0.05)
|
506 |
+
max_sal_range = Slider(value=1,label="Maximum Saliency Value",interactive=True,visible=True,minimum=-1,maximum=1,step=0.05)
|
507 |
+
with Row():
|
508 |
+
generate_saliency = Button("Generate Saliency")
|
509 |
+
with Column():
|
510 |
+
with Tabs():
|
511 |
+
with TabItem("Display interpretation with plot"):
|
512 |
+
interpretation_plot = Plot()
|
513 |
+
with TabItem("Display interpretation with built-in component"):
|
514 |
+
interpretation = gr_components.Interpretation(input_img)
|
515 |
+
|
516 |
+
with Tab("Object Detection"):
|
517 |
+
with Row():
|
518 |
+
with Column(scale=0.5):
|
519 |
+
drop_list_detect_model = Dropdown(value=obj_det_model_name[-1],choices=["Faster-RCNN"],label="Choose Model",interactive="True")
|
520 |
+
with Column(scale=0.5):
|
521 |
+
drop_list_detect_sal = Dropdown(value=obj_det_saliency_algo_name[-1],choices=["RandomGridStack","DRISE"],label="Choose Saliency Algorithm",interactive="True")
|
522 |
+
with Row():
|
523 |
+
with Column(scale=0.33):
|
524 |
+
masks_detect = Number(value=num_masks_state[-1],label="Number of Random Masks (Press Enter to submit the input)",interactive=True,visible=False,precision=0)
|
525 |
+
occlusion_grid_size = Textbox(value=occlusion_grid_state[-1],label="Tuple of occlusion grid size values (Press Enter to submit the input)",interactive=True,visible=False)
|
526 |
+
spatial_res_detect = Number(value=spatial_res_state[-1],label="Spatial Resolution of Masking Grid (Press Enter to submit the input)" ,interactive=True,visible=False,precision=0)
|
527 |
+
with Column(scale=0.33):
|
528 |
+
seed_detect = Number(value=seed_state[-1],label="Seed (Press Enter to submit the input)",interactive=True,visible=False,precision=0)
|
529 |
+
p1_detect = Slider(value=p1_state[-1],label="P1",interactive=True,visible=False, minimum=0,maximum=1,step=0.1)
|
530 |
+
with Column(scale=0.33):
|
531 |
+
threads_detect = Slider(value=threads_state[-1],label="Threads",interactive=True,visible=False)
|
532 |
+
with Row():
|
533 |
+
with Column():
|
534 |
+
input_img_detect = Image(label="Saliency Map Generation", shape=(640, 480))
|
535 |
+
num_detections = Slider(value=2,label="Top-N detections", interactive=True,visible=True)
|
536 |
+
detection = Button("Run Detection Algorithm")
|
537 |
+
with Column():
|
538 |
+
detect_label = AnnotatedImage(label="Detections")
|
539 |
+
with Column():
|
540 |
+
with Row():
|
541 |
+
class_name_det = Dropdown(label="Detection to compute saliency",interactive=True,visible=True)
|
542 |
+
with Row():
|
543 |
+
img_alpha_det = Slider(value=0.7,label="Image Opacity",interactive=True,visible=True,minimum=0,maximum=1,step=0.1)
|
544 |
+
sal_alpha_det = Slider(value=0.3,label="Saliency Map Opacity",interactive=True,visible=True,minimum=0,maximum=1,step=0.1)
|
545 |
+
with Row():
|
546 |
+
min_sal_range_det = Slider(value=0.95,label="Minimum Saliency Value",interactive=True,visible=True,minimum=0.80,maximum=1,step=0.05)
|
547 |
+
max_sal_range_det = Slider(value=1,label="Maximum Saliency Value",interactive=True,visible=True,minimum=0.80,maximum=1,step=0.05)
|
548 |
+
with Row():
|
549 |
+
generate_det_saliency = Button("Generate Saliency")
|
550 |
+
with Column():
|
551 |
+
with Tabs():
|
552 |
+
with TabItem("Display saliency map plot"):
|
553 |
+
det_saliency_plot = Plot()
|
554 |
+
|
555 |
+
# Image Classification dropdown list event listeners
|
556 |
+
drop_list.select(select_img_cls_model,drop_list,drop_list)
|
557 |
+
drop_list_sal.select(select_img_cls_saliency_algo,drop_list_sal,drop_list_sal)
|
558 |
+
drop_list_sal.change(show_textbox_parameters,drop_list_sal,[window_size,stride,masks,spatial_res,seed])
|
559 |
+
drop_list_sal.change(show_slider_parameters,drop_list_sal,[threads,p1])
|
560 |
+
drop_list_sal.change(show_debiased_checkbox,drop_list_sal,debiased)
|
561 |
+
|
562 |
+
# Image Classification textbox, slider and checkbox event listeners
|
563 |
+
window_size.submit(enter_window_size,window_size,window_size)
|
564 |
+
masks.submit(enter_num_masks,masks,masks)
|
565 |
+
stride.submit(enter_stride, stride, stride)
|
566 |
+
spatial_res.submit(enter_spatial_res, spatial_res, spatial_res)
|
567 |
+
seed.submit(enter_seed, seed, seed)
|
568 |
+
threads.change(select_threads, threads, threads)
|
569 |
+
p1.change(select_p1, p1, p1)
|
570 |
+
debiased.change(check_debiased,debiased,debiased)
|
571 |
+
|
572 |
+
# Image Classification prediction and saliency generation event listeners
|
573 |
+
classify.click(predict, [input_img, num_classes], [class_label,class_name])
|
574 |
+
class_label.select(map_labels,None,class_name)
|
575 |
+
generate_saliency.click(interpretation_function, [input_img, class_label, class_name, img_alpha, sal_alpha, min_sal_range, max_sal_range], [interpretation,interpretation_plot])
|
576 |
+
|
577 |
+
# Object Detection dropdown list event listeners
|
578 |
+
drop_list_detect_model.select(select_obj_det_model,drop_list_detect_model,drop_list_detect_model)
|
579 |
+
drop_list_detect_sal.select(select_obj_det_saliency_algo,drop_list_detect_sal,drop_list_detect_sal)
|
580 |
+
drop_list_detect_sal.change(show_slider_parameters,drop_list_detect_sal,[threads_detect,p1_detect])
|
581 |
+
drop_list_detect_sal.change(show_textbox_parameters,drop_list_detect_sal,[masks_detect,spatial_res_detect,seed_detect,occlusion_grid_size])
|
582 |
+
|
583 |
+
# Object detection textbox and slider event listeners
|
584 |
+
masks_detect.submit(enter_num_masks,masks_detect,masks_detect)
|
585 |
+
occlusion_grid_size.submit(enter_occlusion_grid_size,occlusion_grid_size,occlusion_grid_size)
|
586 |
+
spatial_res_detect.submit(enter_spatial_res, spatial_res_detect, spatial_res_detect)
|
587 |
+
seed_detect.submit(enter_seed, seed_detect, seed_detect)
|
588 |
+
threads_detect.change(select_threads, threads_detect, threads_detect)
|
589 |
+
p1_detect.change(select_p1, p1_detect, p1_detect)
|
590 |
+
|
591 |
+
# Object detection prediction, class selection and saliency generation event listeners
|
592 |
+
detection.click(run_detect, [input_img_detect, num_detections], [detect_label,class_name_det])
|
593 |
+
detect_label.select(map_labels, None, class_name_det)
|
594 |
+
generate_det_saliency.click(run_detect_saliency,[input_img_detect, num_detections, class_name_det, img_alpha_det, sal_alpha_det, min_sal_range_det, max_sal_range_det],det_saliency_plot)
|
595 |
+
|
596 |
+
demo.launch()
|
gr_component_state.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Choice of image classification model
|
2 |
+
img_cls_model_name = ['ResNet-50']
|
3 |
+
|
4 |
+
# Choice of object detection model
|
5 |
+
obj_det_model_name = ['Faster-RCNN']
|
6 |
+
|
7 |
+
# Choice of image classification saliency algorithm
|
8 |
+
img_cls_saliency_algo_name = ['RISE']
|
9 |
+
|
10 |
+
# Choice of object detection saliency algorithm
|
11 |
+
obj_det_saliency_algo_name = ['DRISE']
|
12 |
+
|
13 |
+
# Number of threads to utilize when generating masks
|
14 |
+
threads_state = [4]
|
15 |
+
|
16 |
+
# Window_size for SlidingWindowStack algorithm
|
17 |
+
window_size_state = ['(50,50)']
|
18 |
+
|
19 |
+
# Stride for SlidingWindowStack algorithm
|
20 |
+
stride_state = ['(20,20)']
|
21 |
+
|
22 |
+
# Number of random masks for RISEStack/DRISEStack algorithm
|
23 |
+
num_masks_state = [200]
|
24 |
+
|
25 |
+
# Spatial resolution of masking grid for RISEStack/DRISEStack algorithm
|
26 |
+
spatial_res_state = [8]
|
27 |
+
|
28 |
+
# Probability of the grid cell being set to 1 (otherwise 0)
|
29 |
+
p1_state = [0.5]
|
30 |
+
|
31 |
+
# Random seed to allow for reproducibility
|
32 |
+
seed_state = [0]
|
33 |
+
|
34 |
+
# Debiased option for RISEStack/DRISEStack saliency algorithm
|
35 |
+
debiased_state = [True]
|
36 |
+
|
37 |
+
# Occlusion grid cell size in pixels for RandomGridStack algorithm
|
38 |
+
occlusion_grid_state = ['(128,128)']
|
39 |
+
|
40 |
+
|
41 |
+
def select_img_cls_model(model_choice):
|
42 |
+
img_cls_model_name.append(model_choice)
|
43 |
+
return model_choice
|
44 |
+
|
45 |
+
|
46 |
+
def select_obj_det_model(model_choice):
|
47 |
+
obj_det_model_name.append(model_choice)
|
48 |
+
return model_choice
|
49 |
+
|
50 |
+
|
51 |
+
def select_img_cls_saliency_algo(sal_choice):
|
52 |
+
img_cls_saliency_algo_name.append(sal_choice)
|
53 |
+
return sal_choice
|
54 |
+
|
55 |
+
|
56 |
+
def select_obj_det_saliency_algo(sal_choice):
|
57 |
+
obj_det_saliency_algo_name.append(sal_choice)
|
58 |
+
return sal_choice
|
59 |
+
|
60 |
+
|
61 |
+
def select_threads(threads):
|
62 |
+
threads_state.append(threads)
|
63 |
+
return threads
|
64 |
+
|
65 |
+
|
66 |
+
def enter_window_size(val):
|
67 |
+
window_size_state.append(val)
|
68 |
+
return val
|
69 |
+
|
70 |
+
|
71 |
+
def enter_stride(val):
|
72 |
+
stride_state.append(val)
|
73 |
+
return val
|
74 |
+
|
75 |
+
|
76 |
+
def enter_num_masks(val):
|
77 |
+
num_masks_state.append(val)
|
78 |
+
return val
|
79 |
+
|
80 |
+
|
81 |
+
def enter_spatial_res(val):
|
82 |
+
spatial_res_state.append(val)
|
83 |
+
return val
|
84 |
+
|
85 |
+
|
86 |
+
def select_p1(prob):
|
87 |
+
p1_state.append(prob)
|
88 |
+
return prob
|
89 |
+
|
90 |
+
|
91 |
+
def enter_seed(seed):
|
92 |
+
seed_state.append(seed)
|
93 |
+
return seed
|
94 |
+
|
95 |
+
|
96 |
+
def check_debiased(debiased):
|
97 |
+
debiased_state.append(debiased)
|
98 |
+
return debiased
|
99 |
+
|
100 |
+
|
101 |
+
def enter_occlusion_grid_size(val):
|
102 |
+
occlusion_grid_state.append(val)
|
103 |
+
return val
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
xaitk-saliency==0.6.1
|
2 |
+
torch==1.9.0
|
3 |
+
torchvision==0.10.0
|
4 |
+
matplotlib
|
5 |
+
urllib3
|
6 |
+
Pillow
|
7 |
+
gradio==3.28.1
|