Spaces:
Running
Running
from flask import Flask, render_template, request | |
from dotenv import load_dotenv, find_dotenv | |
from openai import OpenAI | |
load_dotenv(find_dotenv()) | |
app = Flask(__name__) | |
client = OpenAI() | |
def generate_post(tone, topic, length, instructions): | |
prompt = f"Write a {tone} blog post about {topic}. Make sure the blog post is no longer than {length} words and ends with a conclusion. {instructions}" | |
response = client.chat.completions.create( | |
model="gpt-3.5-turbo", | |
messages=[ | |
{"role": "system", "content": f"You are an expert {tone} blogger and creative writer."}, | |
{"role": "user", "content": prompt} | |
], | |
max_tokens=600, | |
temperature=0.7, | |
top_p=0.9, | |
frequency_penalty=0, | |
presence_penalty=0, | |
stop=["In conclusion", "In summary"] | |
) | |
return response.choices[0].message.content.strip() | |
def index(): | |
return render_template('index.html') | |
def generate_blog(): | |
# Retrieve form data | |
topic = request.form.get('topic') | |
tone = request.form.get('tone') | |
length = request.form.get('length') | |
instructions = request.form.get('instructions') | |
# Here, you would add your model inference code to generate the blog post | |
generated_text = generate_post(tone, topic, length, instructions) | |
return render_template('results.html', generated_text=generated_text) | |
if __name__ == '__main__': | |
app.run(debug=True) | |