|
import os |
|
import sys |
|
import numpy as np |
|
import tensorflow as tf |
|
import mediapy |
|
from PIL import Image |
|
import gradio as gr |
|
from huggingface_hub import snapshot_download |
|
|
|
|
|
os.system("git clone https://github.com/google-research/frame-interpolation") |
|
sys.path.append("frame-interpolation") |
|
|
|
|
|
from eval import interpolator, util |
|
|
|
def load_model(model_name): |
|
model = interpolator.Interpolator(snapshot_download(repo_id=model_name), None) |
|
return model |
|
|
|
model_names = [ |
|
"akhaliq/frame-interpolation-film-style", |
|
"CHEN11102/sportmodel", |
|
"CHEN11102/sportModel2", |
|
] |
|
|
|
models = {model_name: load_model(model_name) for model_name in model_names} |
|
|
|
ffmpeg_path = util.get_ffmpeg_path() |
|
mediapy.set_ffmpeg(ffmpeg_path) |
|
|
|
def resize(width, img): |
|
img = Image.fromarray(img) |
|
wpercent = (width / float(img.size[0])) |
|
hsize = int((float(img.size[1]) * float(wpercent))) |
|
img = img.resize((width, hsize), Image.LANCZOS) |
|
return img |
|
|
|
def resize_and_crop(img_path, size, crop_origin="middle"): |
|
img = Image.open(img_path) |
|
img = img.resize(size, Image.LANCZOS) |
|
return img |
|
|
|
def resize_img(img1, img2_path): |
|
img_target_size = Image.open(img1) |
|
img_to_resize = resize_and_crop( |
|
img2_path, |
|
(img_target_size.size[0], img_target_size.size[1]), |
|
crop_origin="middle" |
|
) |
|
img_to_resize.save('resized_img2.png') |
|
|
|
def predict(frame1, frame2, times_to_interpolate, model_name): |
|
model = models[model_name] |
|
|
|
frame1 = resize(1080, frame1) |
|
frame2 = resize(1080, frame2) |
|
|
|
frame1.save("test1.png") |
|
frame2.save("test2.png") |
|
|
|
resize_img("test1.png", "test2.png") |
|
input_frames = ["test1.png", "resized_img2.png"] |
|
|
|
frames = list( |
|
util.interpolate_recursively_from_files( |
|
input_frames, times_to_interpolate, model)) |
|
|
|
mediapy.write_video("out.mp4", frames, fps=30) |
|
return "out.mp4" |
|
|
|
title = "Sports model" |
|
description = "Wechat:Liesle1" |
|
article = "" |
|
examples = [ |
|
['cat3.jpeg', 'cat4.jpeg', 2, model_names[0]], |
|
['cat1.jpeg', 'cat2.jpeg', 2, model_names[1]], |
|
] |
|
|
|
gr.Interface( |
|
fn=predict, |
|
inputs=[ |
|
gr.Image(label="First Frame"), |
|
gr.Image(label="Second Frame"), |
|
gr.Number(label="Times to Interpolate", value=2), |
|
gr.Dropdown(label="Model", choices=model_names), |
|
], |
|
outputs=gr.Video(label="Interpolated Frames"), |
|
title=title, |
|
description=description, |
|
article=article, |
|
examples=examples, |
|
).launch() |