File size: 9,827 Bytes
41f2cd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b003220
615aa71
b003220
 
41f2cd0
b003220
 
 
41f2cd0
b003220
 
 
 
 
 
 
 
 
 
41f2cd0
02b8818
 
41f2cd0
02b8818
 
 
 
 
 
 
 
 
41f2cd0
02b8818
41f2cd0
02b8818
 
41f2cd0
02b8818
41f2cd0
 
02b8818
 
41f2cd0
02b8818
 
41f2cd0
02b8818
 
41f2cd0
 
02b8818
 
b003220
 
41f2cd0
02b8818
41f2cd0
 
02b8818
 
 
 
 
 
 
 
41f2cd0
02b8818
 
 
 
 
 
 
41f2cd0
02b8818
 
 
 
 
 
 
 
 
b003220
 
02b8818
 
 
 
 
 
 
 
41f2cd0
02b8818
 
 
 
 
 
 
41f2cd0
02b8818
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41f2cd0
02b8818
 
 
 
41f2cd0
 
02b8818
41f2cd0
02b8818
 
 
 
 
 
41f2cd0
02b8818
 
 
41f2cd0
02b8818
 
 
41f2cd0
02b8818
 
 
 
 
41f2cd0
02b8818
41f2cd0
02b8818
 
 
41f2cd0
02b8818
 
b003220
41f2cd0
02b8818
 
41f2cd0
02b8818
 
41f2cd0
02b8818
 
41f2cd0
02b8818
 
41f2cd0
02b8818
 
41f2cd0
02b8818
 
41f2cd0
02b8818
 
41f2cd0
02b8818
 
41f2cd0
02b8818
 
41f2cd0
02b8818
 
41f2cd0
02b8818
41f2cd0
 
 
02b8818
41f2cd0
 
 
02b8818
41f2cd0
02b8818
41f2cd0
02b8818
41f2cd0
 
 
02b8818
b003220
02b8818
 
 
41f2cd0
 
02b8818
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
# %%
# -*- coding: utf-8 -*-
"""
Spyder Editor

This is a temporary script file.
"""




from numpy import arange
import xarray as xr
import highspy
import linopy
import openpyxl
from linopy import Model, EQUAL
import pandas as pd
import plotly.express as px
##import gurobipy

import streamlit as st


# %%

#url_excel = r'Input_Jahr_2021.xlsx'
url_excel = st.file_uploader(label = 'Excel Upload')
if url_excel == None:
    url_excel = r'Input_Jahr_2021.xlsx'

# # %%
# # Slider for gas price [€/MWh_th]
price_gas = st.slider(value=10, min_value=0, max_value=400, label="Natural gas price [€/MWh]", step=10)

# Slider for CO2 price [€/t]
price_co2 = st.slider(value=80, min_value=0, max_value=400, label="CO2 price [€/t CO2eq]", step=10)

# Slider for CO2 limit [mio. t]
limit_co2 = st.slider(value=400, min_value=0, max_value=750, label="CO2 limit [mio. t]", step=50)

# Slider for H2 price / usevalue [€/MWH_th]
price_h2 = st.slider(value=100, min_value=0, max_value=300, label="Hydrogen price [€/MWh]", step=10)

# %%

# %% [markdown]
#  Read Sets

# %%
## Define all sets for the model
# Timesteps
df_excel= pd.read_excel(url_excel, sheet_name = 'Timesteps_All', header=None)
t = pd.Index(df_excel.iloc[:,0], name = 't')[1:168]
#t = pd.Index(df_excel.iloc[:,0], name = 't')

# Technologies
df_excel = pd.read_excel(url_excel, sheet_name = 'Technologies')
i = pd.Index(df_excel.iloc[:,0], name = 'i')
i

df_excel = pd.read_excel(url_excel, sheet_name = 'Technologies')
iConv = pd.Index(df_excel.iloc[0:7,2], name = 'iConv')

df_excel = pd.read_excel(url_excel, sheet_name = 'Technologies')
iRes = pd.Index(df_excel.iloc[0:4,4], name = 'iRes')

df_excel = pd.read_excel(url_excel, sheet_name = 'Technologies')
iSto = pd.Index(df_excel.iloc[0:2,6], name = 'iSto')

df_excel = pd.read_excel(url_excel, sheet_name = 'Technologies')
iPtG = pd.Index(df_excel.iloc[0:1,8], name = 'iPtG')

df_excel = pd.read_excel(url_excel, sheet_name = 'Technologies')
iHyRes = pd.Index(df_excel.iloc[0:1,10], name = 'iHyRes')

# %%
### Parameters
# CO2 limit (from slider)
l_co2 = limit_co2
p_co2 = price_co2

# length of timesteps
dt = 1

# Demand
df_excel= pd.read_excel(url_excel, sheet_name = 'Demand')
#df_melt = pd.melt(df_excel, id_vars='Zeit')
df_excel = df_excel.rename(columns = {'Timesteps':'t', 'Unnamed: 1':'Demand'})
#df_excel  = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left')
df_excel = df_excel.fillna(0)
df_excel = df_excel.set_index('t')
D_t = df_excel.iloc[:,0].to_xarray()

## Efficiencies
df_excel = pd.read_excel(url_excel, sheet_name = 'Efficiency')
df_excel = df_excel.rename(columns = {'All':'i', 'Unnamed: 1':'Efficiency'})
df_excel  = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left')
df_excel = df_excel.fillna(0)
df_excel = df_excel.set_index('i')
eff_i = df_excel.iloc[:,0].to_xarray()

## Variable costs
# Fuel costs
df_excel = pd.read_excel(url_excel, sheet_name = 'FuelCosts')
df_excel = df_excel.rename(columns = {'Conventionals':'i', 'Unnamed: 1':'FuelCosts'})
df_excel  = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left')
df_excel = df_excel.fillna(0)
df_excel = df_excel.set_index('i')
c_fuel_i = df_excel.iloc[:,0].to_xarray()
# Apply slider value
c_fuel_i.loc[dict(i = 'Fossil Gas')]  = price_gas
c_fuel_i.loc[dict(i = 'H2')]  = price_h2

# Other var. costs
df_excel = pd.read_excel(url_excel, sheet_name = 'OtherVarCosts')
df_excel = df_excel.rename(columns = {'Conventionals':'i', 'Unnamed: 1':'OtherVarCosts'})
df_excel  = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left')
df_excel = df_excel.fillna(0)
df_excel = df_excel.set_index('i')
c_other_i = df_excel.iloc[:,0].to_xarray()

# Investment costs
df_excel = pd.read_excel(url_excel, sheet_name = 'InvCosts')
df_excel = df_excel.rename(columns = {'All':'i', 'Unnamed: 1':'InvCosts'})
df_excel  = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left')
df_excel = df_excel.fillna(0)
df_excel = df_excel.set_index('i')
c_inv_i = df_excel.iloc[:,0].to_xarray()

# Emission factor
df_excel = pd.read_excel(url_excel, sheet_name = 'EmFactor')
df_excel = df_excel.rename(columns = {'Conventionals':'i', 'Unnamed: 1':'EmFactor'})
df_excel  = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left')
df_excel = df_excel.fillna(0)
df_excel = df_excel.set_index('i')
co2_factor_i = df_excel.iloc[:,0].to_xarray()

## Calculation of variable costs
c_var_i = (c_fuel_i.sel(i = iConv) + p_co2 * co2_factor_i.sel(i = iConv)) / eff_i.sel(i = iConv) + c_other_i.sel(i = iConv)

# RES capacity factors
#df_excel = pd.read_excel(url_excel, sheet_name = 'RES',header=[0,1])
#df_excel = pd.read_excel(url_excel, sheet_name = 'RES', index_col=['Timesteps'], columns=['PV', 'WindOn', 'WindOff', 'RoR'])
df_excel = pd.read_excel(url_excel, sheet_name = 'RES')
df_excel = df_excel.set_index(['Timesteps'])
df_test = df_excel
df_excel = df_excel.stack()
#df_excel = df_excel.rename(columns={'PV', 'WindOn', 'WindOff', 'RoR'})
df_test2 = df_excel
#df_excel = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left')
#df_excel = df_excel.fillna(0)

#df_test = df_excel.set_index(['Timesteps', 'PV', 'WindOn', 'WindOff', 'RoR']).stack([0])
#df_test.index = df_test.index.set_names(['t','i'])
s_t_r_iRes = df_excel.to_xarray().rename({'level_1': 'i','Timesteps':'t'})
#s_t_r_iRes = df_excel.iloc[:,0].to_xarray()

# Base capacities
df_excel = pd.read_excel(url_excel, sheet_name = 'InstalledCap')
df_excel = df_excel.rename(columns = {'All':'i', 'Unnamed: 1':'InstalledCap'})
df_excel  = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left')
df_excel = df_excel.fillna(0)
df_excel = df_excel.set_index('i')
K_0_i = df_excel.iloc[:,0].to_xarray()

# Energy-to-power ratio storages
df_excel = pd.read_excel(url_excel, sheet_name = 'E2P')  
df_excel = df_excel.rename(columns = {'Storage':'i', 'Unnamed: 1':'E2P ratio'})
#df_excel  = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left')
df_excel = df_excel.fillna(0)
df_excel = df_excel.set_index('i')
e2p_iSto = df_excel.iloc[:,0].to_xarray()

# Inflow for hydro reservoir
df_excel = pd.read_excel(url_excel, sheet_name = 'HydroInflow')
df_excel = df_excel.rename(columns = {'Timesteps':'t', 'Hydro Water Reservoir':'Inflow'})
df_excel = df_excel.fillna(0)
df_excel = df_excel.set_index('t')
h_t = df_excel.iloc[:,0].to_xarray()

# %%
### Variables
m = Model()

C_tot = m.add_variables(name = 'C_tot')     # Total costs
C_op = m.add_variables(name = 'C_op', lower = 0)       # Operational costs
C_inv = m.add_variables(name = 'C_inv', lower = 0)     # Investment costs

K = m.add_variables(coords = [i], name = 'K', lower = 0)          # Endogenous capacity
y = m.add_variables(coords = [t,i], name = 'y', lower = 0)          # Electricity production --> für Elektrolyseure ausschließen
y_ch = m.add_variables(coords = [t,i], name = 'y_ch', lower = 0)    # Electricity consumption --> für alles außer Elektrolyseure und Speicher ausschließen
l = m.add_variables(coords = [t,i], name = 'l', lower = 0)          # Storage filling level
w = m.add_variables(coords = [t], name = 'w', lower = 0)          # RES curtailment

### Model

## Objective function
C_tot = C_op + C_inv
m.add_objective(C_tot)

## Costs terms for objective function
# Operational costs minus revenue for produced hydrogen
C_op_sum = m.add_constraints((y * c_var_i * dt).sum() - ((y_ch.sel(i = iPtG) / eff_i.sel(i = iPtG)) * price_h2 * dt).sum() == C_op, name = 'C_op_sum')

# Investment costs
C_inv_sum = m.add_constraints((K * c_inv_i).sum() == C_inv, name = 'C_inv_sum')

## Load serving
loadserve_t = m.add_constraints(((y * dt).sum(dims = 'i') - (w * dt) == D_t.sel(t = t) * dt), name =  'load')

## Maximum capacity limit
maxcap_i_t = m.add_constraints((y - K <= K_0_i), name =  'max_cap')

## Maximum storage charging and discharging
maxcha_iSto_t = m.add_constraints((y.sel(i = iSto) + y_ch.sel(i = iSto)  - K.sel(i = iSto) <= K_0_i.sel(i = iSto)), name =  'max_cha')

## Maximum electrolyzer capacity
ptg_prod_iPtG_t = m.add_constraints((y_ch.sel(i = iPtG) - K.sel(i = iPtG)<= K_0_i.sel(i = iPtG)), name = 'max_cha_ptg')

## Infeed of renewables
infeed_iRes_t = m.add_constraints((y.sel(i = iRes) - s_t_r_iRes.sel(i = iRes).sel(t = t) * K.sel(i = iRes) <= s_t_r_iRes.sel(i = iRes).sel(t = t) * K_0_i.sel(i = iRes)), name =  'infeed')

## Maximum filling level restriction storage power plant --> Energy-to-Power-Ratio eingeführt. (JR)
maxcapsto_iSto_t = m.add_constraints((l.sel(i = iSto) - K.sel(i = iSto) * e2p_iSto.sel(i = iSto) <= K_0_i.sel(i = iSto) * e2p_iSto.sel(i = iSto)), name = 'max_sto_filling')

## Filling level restriction hydro reservoir --> Ist Kreisbedingung erfüllt? (JR)
filling_iHydro_t = m.add_constraints(l.sel(i = iHyRes) - l.sel(i = iHyRes).roll(t = -1) + y.sel(i = iHyRes) * dt == h_t.sel(t = t) * dt, name = 'filling_level_hydro')

## Filling level restriction other storages --> Ist Kreisbedingung erfüllt? (JR)
filling_iSto_t = m.add_constraints(l.sel(i = iSto) - (l.sel(i = iSto).roll(t = -1) - (y.sel(i = iSto) / eff_i.sel(i = iSto)) * dt + y_ch.sel(i = iSto) * eff_i.sel(i = iSto) * dt) == 0, name = 'filling_level')

## CO2 limit --> ggf. hier auch mit Subset arbeiten (Technologien, die Brennstoff verbrauchen). (JR)
CO2_limit = m.add_constraints(((y / eff_i) * co2_factor_i * dt).sum() <= l_co2, name = 'CO2_limit')

m.solve(solver_name = 'highs')



# %%
# Read Objective from solution
m.objective_value

pd.options.plotting.backend = "plotly"
# Read dual values and plot 
df = loadserve_t.dual.to_dataframe().reset_index()
#df['t'] = pd.to_datetime(df['t'])
df


# %%
# Read values
Productionlevels = m.solution['y'].to_dataframe().reset_index()

df = Productionlevels
df

# %%
#pandas gui
# Create Line plot
fig = px.line(df, x=df['t'], y=df['y'], color = df['i'])
fig

# %%