Spaces:
Runtime error
Runtime error
Upload 4 files
Browse files- Input_Jahr_2021.xlsx +2 -2
- app.py +141 -180
- model_data.pkl +3 -0
- sourced.py +205 -0
Input_Jahr_2021.xlsx
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c92d04350980ce78a44f5ce2cc57fef81682eb12247d80b9f89bed4954302d7d
|
3 |
+
size 995396
|
app.py
CHANGED
@@ -10,198 +10,116 @@ This is a temporary script file.
|
|
10 |
|
11 |
|
12 |
from numpy import arange
|
13 |
-
# %%
|
14 |
import xarray as xr
|
15 |
-
# %%
|
16 |
import highspy
|
17 |
-
# %%
|
18 |
-
import linopy
|
19 |
-
|
20 |
-
# %%
|
21 |
from linopy import Model, EQUAL
|
22 |
-
# %%
|
23 |
import pandas as pd
|
24 |
-
#%%
|
25 |
import plotly.express as px
|
26 |
-
##import gurobipy
|
27 |
-
|
28 |
-
# %%
|
29 |
import streamlit as st
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
32 |
# %%
|
|
|
|
|
|
|
33 |
|
34 |
#url_excel = r'Input_Jahr_2021.xlsx'
|
35 |
-
url_excel = st.file_uploader(label = 'Excel Upload')
|
|
|
|
|
36 |
if url_excel == None:
|
37 |
url_excel = r'Input_Jahr_2021.xlsx'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
# # %%
|
40 |
-
# # Slider for gas price [€/MWh_th]
|
41 |
-
price_gas = st.slider(value=100, min_value=0, max_value=400, label="Natural gas price [€/MWh]", step=10)
|
42 |
-
|
43 |
-
# Slider for CO2 price [€/t]
|
44 |
-
price_co2 = st.slider(value=0, min_value=0, max_value=400, label="CO2 price [€/t CO2eq]", step=10)
|
45 |
-
|
46 |
-
# Slider for CO2 limit [mio. t]
|
47 |
-
limit_co2 = st.slider(value=400, min_value=0, max_value=750, label="CO2 limit [mio. t]", step=50)
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
# %%
|
53 |
|
|
|
54 |
|
55 |
|
56 |
-
#time_steps_aggregate = 6
|
57 |
-
#= xr_profiles.rolling( time_step = time_steps_aggregate).mean().sel(time_step = time[0::time_steps_aggregate])
|
58 |
|
59 |
-
|
60 |
-
|
61 |
|
|
|
62 |
|
63 |
|
64 |
-
# %%
|
65 |
-
## Define all sets for the model
|
66 |
-
# Timesteps
|
67 |
-
df_excel= pd.read_excel(url_excel, sheet_name = 'Timesteps_All', header=None)
|
68 |
-
t = pd.Index(df_excel.iloc[:,0], name = 't')
|
69 |
-
#t = pd.Index(df_excel.iloc[:,0], name = 't')
|
70 |
|
71 |
-
#
|
72 |
-
df_excel = pd.read_excel(url_excel, sheet_name = 'Technologies')
|
73 |
-
i = pd.Index(df_excel.iloc[:,0], name = 'i')
|
74 |
|
75 |
-
multiselect = st.multiselect(label = 'Technolgy invest', options=i)
|
76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
-
|
79 |
-
|
|
|
80 |
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
-
|
85 |
-
|
|
|
|
|
86 |
|
87 |
-
|
88 |
-
|
89 |
|
90 |
-
|
91 |
-
|
|
|
92 |
|
93 |
-
#
|
94 |
-
|
95 |
-
# CO2 limit (from slider)
|
96 |
-
l_co2 = limit_co2*10**6
|
97 |
-
p_co2 = price_co2
|
98 |
-
|
99 |
-
# length of timesteps
|
100 |
-
dt = 1
|
101 |
-
|
102 |
-
# Demand
|
103 |
-
df_excel= pd.read_excel(url_excel, sheet_name = 'Demand')
|
104 |
-
#df_melt = pd.melt(df_excel, id_vars='Zeit')
|
105 |
-
df_excel = df_excel.rename(columns = {'Timesteps':'t', 'Unnamed: 1':'Demand'})
|
106 |
-
#df_excel = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left')
|
107 |
-
df_excel = df_excel.fillna(0)
|
108 |
-
df_excel = df_excel.set_index('t')
|
109 |
-
D_t = df_excel.iloc[:,0].to_xarray()
|
110 |
-
D_t = timstep_aggregate(6,D_t)
|
111 |
-
|
112 |
-
## Efficiencies
|
113 |
-
df_excel = pd.read_excel(url_excel, sheet_name = 'Efficiency')
|
114 |
-
df_excel = df_excel.rename(columns = {'All':'i', 'Unnamed: 1':'Efficiency'})
|
115 |
-
df_excel = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left')
|
116 |
-
df_excel = df_excel.fillna(0)
|
117 |
-
df_excel = df_excel.set_index('i')
|
118 |
-
eff_i = df_excel.iloc[:,0].to_xarray()
|
119 |
-
|
120 |
-
## Variable costs
|
121 |
-
# Fuel costs
|
122 |
-
df_excel = pd.read_excel(url_excel, sheet_name = 'FuelCosts')
|
123 |
-
df_excel = df_excel.rename(columns = {'Conventionals':'i', 'Unnamed: 1':'FuelCosts'})
|
124 |
-
df_excel = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left')
|
125 |
-
df_excel = df_excel.fillna(0)
|
126 |
-
df_excel = df_excel.set_index('i')
|
127 |
-
c_fuel_i = df_excel.iloc[:,0].to_xarray()
|
128 |
-
# Apply slider value
|
129 |
-
c_fuel_i.loc[dict(i = 'Fossil Gas')] = price_gas
|
130 |
-
c_fuel_i.loc[dict(i = 'H2')] = price_h2
|
131 |
-
|
132 |
-
# Other var. costs
|
133 |
-
df_excel = pd.read_excel(url_excel, sheet_name = 'OtherVarCosts')
|
134 |
-
df_excel = df_excel.rename(columns = {'Conventionals':'i', 'Unnamed: 1':'OtherVarCosts'})
|
135 |
-
df_excel = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left')
|
136 |
-
df_excel = df_excel.fillna(0)
|
137 |
-
df_excel = df_excel.set_index('i')
|
138 |
-
c_other_i = df_excel.iloc[:,0].to_xarray()
|
139 |
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
df_excel = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left')
|
144 |
-
df_excel = df_excel.fillna(0)
|
145 |
-
df_excel = df_excel.set_index('i')
|
146 |
-
c_inv_i = df_excel.iloc[:,0].to_xarray()*1000*0.1 # kw to MW and annuity factor
|
147 |
-
|
148 |
-
# Emission factor
|
149 |
-
df_excel = pd.read_excel(url_excel, sheet_name = 'EmFactor')
|
150 |
-
df_excel = df_excel.rename(columns = {'Conventionals':'i', 'Unnamed: 1':'EmFactor'})
|
151 |
-
df_excel = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left')
|
152 |
-
df_excel = df_excel.fillna(0)
|
153 |
-
df_excel = df_excel.set_index('i')
|
154 |
-
co2_factor_i = df_excel.iloc[:,0].to_xarray()
|
155 |
-
|
156 |
-
## Calculation of variable costs
|
157 |
-
c_var_i = (c_fuel_i.sel(i = iConv) + p_co2 * co2_factor_i.sel(i = iConv)) / eff_i.sel(i = iConv) + c_other_i.sel(i = iConv)
|
158 |
-
|
159 |
-
# RES capacity factors
|
160 |
-
#df_excel = pd.read_excel(url_excel, sheet_name = 'RES',header=[0,1])
|
161 |
-
#df_excel = pd.read_excel(url_excel, sheet_name = 'RES', index_col=['Timesteps'], columns=['PV', 'WindOn', 'WindOff', 'RoR'])
|
162 |
-
df_excel = pd.read_excel(url_excel, sheet_name = 'RES')
|
163 |
-
df_excel = df_excel.set_index(['Timesteps'])
|
164 |
-
df_test = df_excel
|
165 |
-
df_excel = df_excel.stack()
|
166 |
-
#df_excel = df_excel.rename(columns={'PV', 'WindOn', 'WindOff', 'RoR'})
|
167 |
-
df_test2 = df_excel
|
168 |
-
#df_excel = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left')
|
169 |
-
#df_excel = df_excel.fillna(0)
|
170 |
-
|
171 |
-
#df_test = df_excel.set_index(['Timesteps', 'PV', 'WindOn', 'WindOff', 'RoR']).stack([0])
|
172 |
-
#df_test.index = df_test.index.set_names(['t','i'])
|
173 |
-
s_t_r_iRes = df_excel.to_xarray().rename({'level_1': 'i','Timesteps':'t'})
|
174 |
-
s_t_r_iRes = timstep_aggregate(6,s_t_r_iRes)
|
175 |
-
#s_t_r_iRes = df_excel.iloc[:,0].to_xarray()
|
176 |
-
|
177 |
-
# Base capacities
|
178 |
-
df_excel = pd.read_excel(url_excel, sheet_name = 'InstalledCap')
|
179 |
-
df_excel = df_excel.rename(columns = {'All':'i', 'Unnamed: 1':'InstalledCap'})
|
180 |
-
df_excel = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left')
|
181 |
-
df_excel = df_excel.fillna(0)
|
182 |
-
df_excel = df_excel.set_index('i')
|
183 |
-
K_0_i = df_excel.iloc[:,0].to_xarray()
|
184 |
-
|
185 |
-
# Energy-to-power ratio storages
|
186 |
-
df_excel = pd.read_excel(url_excel, sheet_name = 'E2P')
|
187 |
-
df_excel = df_excel.rename(columns = {'Storage':'i', 'Unnamed: 1':'E2P ratio'})
|
188 |
-
#df_excel = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left')
|
189 |
-
df_excel = df_excel.fillna(0)
|
190 |
-
df_excel = df_excel.set_index('i')
|
191 |
-
e2p_iSto = df_excel.iloc[:,0].to_xarray()
|
192 |
-
|
193 |
-
# Inflow for hydro reservoir
|
194 |
-
df_excel = pd.read_excel(url_excel, sheet_name = 'HydroInflow')
|
195 |
-
df_excel = df_excel.rename(columns = {'Timesteps':'t', 'Hydro Water Reservoir':'Inflow'})
|
196 |
-
df_excel = df_excel.fillna(0)
|
197 |
-
df_excel = df_excel.set_index('t')
|
198 |
-
h_t = df_excel.iloc[:,0].to_xarray()
|
199 |
|
|
|
|
|
|
|
|
|
|
|
200 |
|
201 |
|
202 |
-
|
|
|
|
|
203 |
|
204 |
|
|
|
|
|
205 |
# %%
|
206 |
### Variables
|
207 |
m = Model()
|
@@ -216,7 +134,6 @@ y_ch = m.add_variables(coords = [t,i], name = 'y_ch', lower = 0) # Electricit
|
|
216 |
l = m.add_variables(coords = [t,i], name = 'l', lower = 0) # Storage filling level
|
217 |
w = m.add_variables(coords = [t], name = 'w', lower = 0) # RES curtailment
|
218 |
|
219 |
-
partial_year_factor = (8760/len(t))
|
220 |
|
221 |
## Objective function
|
222 |
C_tot = C_op + C_inv
|
@@ -224,20 +141,19 @@ m.add_objective(C_tot)
|
|
224 |
|
225 |
## Costs terms for objective function
|
226 |
# Operational costs minus revenue for produced hydrogen
|
227 |
-
C_op_sum = m.add_constraints((y
|
228 |
-
((y_ch.sel(i = iPtG) * eff_i.sel(i = iPtG)) * price_h2 * dt).sum()*partial_year_factor == C_op, name = 'C_op_sum')
|
229 |
|
230 |
# Investment costs
|
231 |
C_inv_sum = m.add_constraints((K * c_inv_i).sum() == C_inv, name = 'C_inv_sum')
|
232 |
|
233 |
## Load serving
|
234 |
-
loadserve_t = m.add_constraints(((y
|
235 |
|
236 |
## Maximum capacity limit
|
237 |
maxcap_i_t = m.add_constraints((y - K <= K_0_i), name = 'max_cap')
|
238 |
|
239 |
## Maximum capacity limit
|
240 |
-
maxcap_invest_i = m.add_constraints((K.sel(i =
|
241 |
|
242 |
## Maximum storage charging and discharging
|
243 |
maxcha_iSto_t = m.add_constraints((y.sel(i = iSto) + y_ch.sel(i = iSto) - K.sel(i = iSto) <= K_0_i.sel(i = iSto)), name = 'max_cha')
|
@@ -258,49 +174,94 @@ filling_iHydro_t = m.add_constraints(l.sel(i = iHyRes) - l.sel(i = iHyRes).roll(
|
|
258 |
filling_iSto_t = m.add_constraints(l.sel(i = iSto) - (l.sel(i = iSto).roll(t = -1) + (y.sel(i = iSto) ) * dt - y_ch.sel(i = iSto) * eff_i.sel(i = iSto) * dt) == 0, name = 'filling_level')
|
259 |
|
260 |
## CO2 limit --> ggf. hier auch mit Subset arbeiten (Technologien, die Brennstoff verbrauchen). (JR)
|
261 |
-
CO2_limit = m.add_constraints(((y / eff_i) * co2_factor_i * dt).sum()* partial_year_factor <= l_co2 , name = 'CO2_limit')
|
262 |
|
263 |
|
264 |
# %%
|
265 |
m.solve(solver_name = 'highs')
|
266 |
|
267 |
-
|
268 |
-
m.solution['K'].to_dataframe().reset_index()
|
269 |
-
|
270 |
-
# %%
|
271 |
-
#((m.solution['y'] / eff_i) * co2_factor_i * dt).sum()*partial_year_factor
|
272 |
-
|
273 |
|
274 |
-
|
275 |
-
#m.solution['C_inv']
|
276 |
|
|
|
|
|
277 |
# %%
|
278 |
# Installed Cap
|
279 |
# Assuming df_excel has columns 'All' and 'Capacities'
|
280 |
|
281 |
fig = px.bar((m.solution['K']+K_0_i).to_dataframe(name='K').reset_index(), \
|
282 |
-
y='i', x='K', orientation='h', title='
|
283 |
|
284 |
-
fig
|
285 |
|
286 |
# %%
|
|
|
287 |
fig = px.bar(m.solution['K'].to_dataframe().reset_index(), y='i', x='K', orientation='h', title='New Capacities', color='i')
|
288 |
|
289 |
-
|
290 |
-
|
291 |
|
292 |
-
i_with_capacity = m.solution['K'].where( m.solution['K'] > 0).dropna(dim = 'i').get_index('i')
|
293 |
# %%
|
|
|
|
|
294 |
fig = px.area(m.solution['y'].sel(i = i_with_capacity).to_dataframe().reset_index(), y='y', x='t', title='Production', color='i')
|
295 |
|
296 |
-
|
|
|
|
|
|
|
|
|
297 |
# %%
|
|
|
|
|
|
|
|
|
298 |
# %%
|
299 |
-
fig = px.line(
|
|
|
|
|
300 |
|
301 |
-
fig
|
302 |
|
303 |
# %%
|
304 |
|
305 |
-
|
306 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
|
12 |
from numpy import arange
|
|
|
13 |
import xarray as xr
|
|
|
14 |
import highspy
|
|
|
|
|
|
|
|
|
15 |
from linopy import Model, EQUAL
|
|
|
16 |
import pandas as pd
|
|
|
17 |
import plotly.express as px
|
|
|
|
|
|
|
18 |
import streamlit as st
|
19 |
+
import sourced as src
|
20 |
+
st.set_page_config(layout="wide")
|
21 |
+
# you can create columns to better manage the flow of your page
|
22 |
+
# this command makes 3 columns of equal width
|
23 |
+
col1, col2, col3, col4 = st.columns(4)
|
24 |
+
col1.header("Data Input")
|
25 |
+
col4.header("Download Results")
|
26 |
# %%
|
27 |
+
with col1:
|
28 |
+
with open('Input_Jahr_2021.xlsx', 'rb') as f:
|
29 |
+
st.download_button('Download Excel Template', f, file_name='Input_Jahr_2021.xlsx') # Defaults to 'application/octet-stream'
|
30 |
|
31 |
#url_excel = r'Input_Jahr_2021.xlsx'
|
32 |
+
url_excel = st.file_uploader(label = 'Excel Upload')
|
33 |
+
|
34 |
+
|
35 |
if url_excel == None:
|
36 |
url_excel = r'Input_Jahr_2021.xlsx'
|
37 |
+
sets_dict, params_dict= src.load_data_from_excel(url_excel, load_from_pickle_flag = True)
|
38 |
+
with col4:
|
39 |
+
st.write('Running with standard data')
|
40 |
+
else:
|
41 |
+
sets_dict, params_dict= src.load_data_from_excel(url_excel, load_from_pickle_flag = False)
|
42 |
+
with col4:
|
43 |
+
st.write('Running with user data')
|
44 |
|
45 |
# # %%
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
def timstep_aggregate(time_steps_aggregate, xr ):
|
48 |
+
return xr.rolling( t = time_steps_aggregate).mean().sel(t = t[0::time_steps_aggregate])
|
|
|
|
|
49 |
|
50 |
+
#s_t_r_iRes = timstep_aggregate(6,s_t_r_iRes)
|
51 |
|
52 |
|
|
|
|
|
53 |
|
54 |
+
# %%
|
55 |
+
#sets_dict, params_dict= src.load_data_from_excel(url_excel,write_to_pickle_flag=True)
|
56 |
|
57 |
+
# %%
|
58 |
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
+
#sets_dict, params_dict= load_data_from_excel(url_excel, load_from_pickle_flag = False)
|
|
|
|
|
62 |
|
|
|
63 |
|
64 |
+
dt = 6
|
65 |
+
# Unpack sets_dict into the workspace
|
66 |
+
t = sets_dict['t']
|
67 |
+
i = sets_dict['i']
|
68 |
+
iSto = sets_dict['iSto']
|
69 |
+
iConv = sets_dict['iConv']
|
70 |
+
iPtG = sets_dict['iPtG']
|
71 |
+
iRes = sets_dict['iRes']
|
72 |
+
iHyRes = sets_dict['iHyRes']
|
73 |
|
74 |
+
# Unpack params_dict into the workspace
|
75 |
+
l_co2 = params_dict['l_co2']
|
76 |
+
p_co2 = params_dict['p_co2']
|
77 |
|
78 |
+
D_t = timstep_aggregate(dt,params_dict['D_t'])
|
79 |
+
eff_i = params_dict['eff_i']
|
80 |
+
c_fuel_i = params_dict['c_fuel_i']
|
81 |
+
c_other_i = params_dict['c_other_i']
|
82 |
+
c_inv_i = params_dict['c_inv_i']
|
83 |
+
co2_factor_i = params_dict['co2_factor_i']
|
84 |
+
#c_var_i = params_dict['c_var_i']
|
85 |
+
s_t_r_iRes = timstep_aggregate(dt,params_dict['s_t_r_iRes'])
|
86 |
+
K_0_i = params_dict['K_0_i']
|
87 |
+
e2p_iSto = params_dict['e2p_iSto']
|
88 |
+
h_t = timstep_aggregate(dt,params_dict['h_t'])
|
89 |
|
90 |
+
t = D_t.get_index('t')
|
91 |
+
partial_year_factor = (8760/len(t))/dt
|
92 |
+
# # Slider for gas price [€/MWh_th]
|
93 |
+
#price_gas = st.slider(value=100, min_value=0, max_value=400, label="Natural gas price [€/MWh]", step=10)
|
94 |
|
95 |
+
# Slider for CO2 price [€/t]
|
96 |
+
#price_co2 = st.slider(value=0, min_value=0, max_value=400, label="CO2 price [€/t CO2eq]", step=10)
|
97 |
|
98 |
+
with col2:
|
99 |
+
# Slider for CO2 limit [mio. t]
|
100 |
+
l_co2 = st.slider(value=int(params_dict['l_co2']), min_value=0, max_value=750, label="CO2 limit [mio. t]", step=50)
|
101 |
|
102 |
+
# Slider for H2 price / usevalue [€/MWH_th]
|
103 |
+
price_h2 = st.slider(value=100, min_value=0, max_value=300, label="Hydrogen price [€/MWh]", step=10)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
+
for i_idx in c_fuel_i.get_index('i'):
|
106 |
+
if i_idx in ['Lignite']:
|
107 |
+
c_fuel_i.loc[i_idx] = st.slider(value=int(c_fuel_i.loc[i_idx]), min_value=0, max_value=300, label=i_idx + ' Price' , step=10)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
+
with col3:
|
110 |
+
# Slider for CO2 limit [mio. t]
|
111 |
+
for i_idx in c_fuel_i.get_index('i'):
|
112 |
+
if i_idx in ['Fossil Hard coal', 'Fossil Oil','Fossil Gas']:
|
113 |
+
c_fuel_i.loc[i_idx] = st.slider(value=int(c_fuel_i.loc[i_idx]), min_value=0, max_value=300, label=i_idx + ' Price' , step=10)
|
114 |
|
115 |
|
116 |
+
#time_steps_aggregate = 6
|
117 |
+
#= xr_profiles.rolling( time_step = time_steps_aggregate).mean().sel(time_step = time[0::time_steps_aggregate])
|
118 |
+
price_co2 = 0
|
119 |
|
120 |
|
121 |
+
#technologies_no_invest = st.multiselect(label='Technolgy invest', options=i)
|
122 |
+
technologies_no_invest = ['Electrolyzer','Biomass','RoR']
|
123 |
# %%
|
124 |
### Variables
|
125 |
m = Model()
|
|
|
134 |
l = m.add_variables(coords = [t,i], name = 'l', lower = 0) # Storage filling level
|
135 |
w = m.add_variables(coords = [t], name = 'w', lower = 0) # RES curtailment
|
136 |
|
|
|
137 |
|
138 |
## Objective function
|
139 |
C_tot = C_op + C_inv
|
|
|
141 |
|
142 |
## Costs terms for objective function
|
143 |
# Operational costs minus revenue for produced hydrogen
|
144 |
+
C_op_sum = m.add_constraints((y * c_fuel_i/eff_i).sum()*dt*partial_year_factor == C_op, name = 'C_op_sum')
|
|
|
145 |
|
146 |
# Investment costs
|
147 |
C_inv_sum = m.add_constraints((K * c_inv_i).sum() == C_inv, name = 'C_inv_sum')
|
148 |
|
149 |
## Load serving
|
150 |
+
loadserve_t = m.add_constraints(((y ).sum(dims = 'i') - (w ) - y_ch.sum(dims = 'i') == D_t.sel(t = t) ), name = 'load')
|
151 |
|
152 |
## Maximum capacity limit
|
153 |
maxcap_i_t = m.add_constraints((y - K <= K_0_i), name = 'max_cap')
|
154 |
|
155 |
## Maximum capacity limit
|
156 |
+
maxcap_invest_i = m.add_constraints((K.sel(i = technologies_no_invest) <= 0), name = 'max_cap_invest')
|
157 |
|
158 |
## Maximum storage charging and discharging
|
159 |
maxcha_iSto_t = m.add_constraints((y.sel(i = iSto) + y_ch.sel(i = iSto) - K.sel(i = iSto) <= K_0_i.sel(i = iSto)), name = 'max_cha')
|
|
|
174 |
filling_iSto_t = m.add_constraints(l.sel(i = iSto) - (l.sel(i = iSto).roll(t = -1) + (y.sel(i = iSto) ) * dt - y_ch.sel(i = iSto) * eff_i.sel(i = iSto) * dt) == 0, name = 'filling_level')
|
175 |
|
176 |
## CO2 limit --> ggf. hier auch mit Subset arbeiten (Technologien, die Brennstoff verbrauchen). (JR)
|
177 |
+
CO2_limit = m.add_constraints(((y / eff_i) * co2_factor_i * dt).sum()* partial_year_factor <= l_co2*1_000_000 , name = 'CO2_limit')
|
178 |
|
179 |
|
180 |
# %%
|
181 |
m.solve(solver_name = 'highs')
|
182 |
|
183 |
+
st.markdown("---")
|
|
|
|
|
|
|
|
|
|
|
184 |
|
185 |
+
colb1, colb2 = st.columns(2)
|
|
|
186 |
|
187 |
+
# %%
|
188 |
+
#c_var_i.to_dataframe(name='VarCosts')
|
189 |
# %%
|
190 |
# Installed Cap
|
191 |
# Assuming df_excel has columns 'All' and 'Capacities'
|
192 |
|
193 |
fig = px.bar((m.solution['K']+K_0_i).to_dataframe(name='K').reset_index(), \
|
194 |
+
y='i', x='K', orientation='h', title='Total Installed Capacities', color='i')
|
195 |
|
196 |
+
#fig
|
197 |
|
198 |
# %%
|
199 |
+
df_new_capacities = m.solution['K'].to_dataframe().reset_index()
|
200 |
fig = px.bar(m.solution['K'].to_dataframe().reset_index(), y='i', x='K', orientation='h', title='New Capacities', color='i')
|
201 |
|
202 |
+
with colb1:
|
203 |
+
fig
|
204 |
|
|
|
205 |
# %%
|
206 |
+
i_with_capacity = m.solution['K'].where( m.solution['K'] > 0).dropna(dim = 'i').get_index('i')
|
207 |
+
df_production = m.solution['y'].sel(i = i_with_capacity).to_dataframe().reset_index()
|
208 |
fig = px.area(m.solution['y'].sel(i = i_with_capacity).to_dataframe().reset_index(), y='y', x='t', title='Production', color='i')
|
209 |
|
210 |
+
|
211 |
+
with colb2:
|
212 |
+
fig
|
213 |
+
|
214 |
+
|
215 |
# %%
|
216 |
+
|
217 |
+
df_price = m.constraints['load'].dual.to_dataframe().reset_index()
|
218 |
+
df_price['dual'] = df_price['dual']/dt
|
219 |
+
|
220 |
# %%
|
221 |
+
fig = px.line(df_price, y='dual', x='t', title='Prices')
|
222 |
+
with colb1:
|
223 |
+
fig
|
224 |
|
|
|
225 |
|
226 |
# %%
|
227 |
|
228 |
+
df_contr_marg = m.constraints['max_cap'].dual.to_dataframe().reset_index()
|
229 |
+
df_contr_marg['dual'] = df_contr_marg['dual']/dt
|
230 |
+
# %%
|
231 |
+
|
232 |
+
fig = px.line(m.constraints['max_cap'].dual.to_dataframe().reset_index(), y='dual', x='t',title='contribution margin', color='i')
|
233 |
+
with colb2:
|
234 |
+
fig
|
235 |
+
|
236 |
+
|
237 |
+
|
238 |
+
# %%
|
239 |
+
df_Co2_price = m.constraints['CO2_limit'].dual.values
|
240 |
+
|
241 |
+
|
242 |
+
|
243 |
+
import pandas as pd
|
244 |
+
from io import BytesIO
|
245 |
+
#from pyxlsb import open_workbook as open_xlsb
|
246 |
+
import streamlit as st
|
247 |
+
import xlsxwriter
|
248 |
+
# %%
|
249 |
+
output = BytesIO()
|
250 |
+
|
251 |
+
|
252 |
+
# Create a Pandas Excel writer using XlsxWriter as the engine
|
253 |
+
with pd.ExcelWriter(output, engine='xlsxwriter') as writer:
|
254 |
+
# Write each DataFrame to a different sheet
|
255 |
+
df_price.to_excel(writer, sheet_name='Prices', index=False)
|
256 |
+
df_contr_marg.to_excel(writer, sheet_name='Contribution Margin', index=False)
|
257 |
+
df_new_capacities.to_excel(writer, sheet_name='Capcities', index=False)
|
258 |
+
df_production.to_excel(writer, sheet_name='Capcities', index=False)
|
259 |
+
|
260 |
+
|
261 |
+
with col4:
|
262 |
+
st.download_button(
|
263 |
+
label="Download Excel workbook Results",
|
264 |
+
data=output.getvalue(),
|
265 |
+
file_name="workbook.xlsx",
|
266 |
+
mime="application/vnd.ms-excel"
|
267 |
+
)
|
model_data.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:05322da706d8d1acc11be0c013f3992ca967424ecc9f12c41ea92985af49cfa2
|
3 |
+
size 1373491
|
sourced.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# %%
|
2 |
+
import pandas as pd
|
3 |
+
|
4 |
+
import pickle
|
5 |
+
|
6 |
+
# Define the file path for the pickle file
|
7 |
+
pickle_file_path = 'model_data.pkl'
|
8 |
+
|
9 |
+
# Function to save dictionaries to a pickle file
|
10 |
+
def save_to_pickle(sets_dict, params_dict):
|
11 |
+
with open(pickle_file_path, 'wb') as file:
|
12 |
+
pickle.dump({'sets': sets_dict, 'params': params_dict}, file)
|
13 |
+
|
14 |
+
# Function to load dictionaries from a pickle file
|
15 |
+
def load_from_pickle():
|
16 |
+
with open(pickle_file_path, 'rb') as file:
|
17 |
+
data = pickle.load(file)
|
18 |
+
return data['sets'], data['params']
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
def load_data_from_excel(url_excel,load_from_pickle_flag = False, write_to_pickle_flag = True):
|
23 |
+
|
24 |
+
|
25 |
+
if load_from_pickle_flag:
|
26 |
+
# Load dictionaries from the pickle file
|
27 |
+
loaded_sets_dict, loaded_params_dict = load_from_pickle()
|
28 |
+
return loaded_sets_dict, loaded_params_dict
|
29 |
+
|
30 |
+
# Timesteps
|
31 |
+
df_excel = pd.read_excel(url_excel, sheet_name='Timesteps_All', header=None)
|
32 |
+
t = pd.Index(df_excel.iloc[:, 0], name='t')
|
33 |
+
|
34 |
+
# Technologies
|
35 |
+
df_excel = pd.read_excel(url_excel, sheet_name='Technologies')
|
36 |
+
i = pd.Index(df_excel.iloc[:, 0], name='i')
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
|
41 |
+
df_excel = pd.read_excel(url_excel, sheet_name='Technologies')
|
42 |
+
iConv = pd.Index(df_excel.iloc[0:7, 2], name='iConv')
|
43 |
+
|
44 |
+
df_excel = pd.read_excel(url_excel, sheet_name='Technologies')
|
45 |
+
iRes = pd.Index(df_excel.iloc[0:4, 4], name='iRes')
|
46 |
+
|
47 |
+
df_excel = pd.read_excel(url_excel, sheet_name='Technologies')
|
48 |
+
iSto = pd.Index(df_excel.iloc[0:2, 6], name='iSto')
|
49 |
+
|
50 |
+
df_excel = pd.read_excel(url_excel, sheet_name='Technologies')
|
51 |
+
iPtG = pd.Index(df_excel.iloc[0:1, 8], name='iPtG')
|
52 |
+
|
53 |
+
|
54 |
+
df_excel = pd.read_excel(url_excel, sheet_name='Technologies')
|
55 |
+
iHyRes = pd.Index(df_excel.iloc[0:1, 10], name='iHyRes')
|
56 |
+
|
57 |
+
# Parameters
|
58 |
+
l_co2 = pd.read_excel(url_excel, sheet_name='CO2_Cap').iloc[0,0]
|
59 |
+
p_co2 = 0
|
60 |
+
dt = 1
|
61 |
+
|
62 |
+
|
63 |
+
# Demand
|
64 |
+
df_excel= pd.read_excel(url_excel, sheet_name = 'Demand')
|
65 |
+
#df_melt = pd.melt(df_excel, id_vars='Zeit')
|
66 |
+
df_excel = df_excel.rename(columns = {'Timesteps':'t', 'Unnamed: 1':'Demand'})
|
67 |
+
#df_excel = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left')
|
68 |
+
df_excel = df_excel.fillna(0)
|
69 |
+
df_excel = df_excel.set_index('t')
|
70 |
+
D_t = df_excel.iloc[:,0].to_xarray()
|
71 |
+
## Efficiencies
|
72 |
+
df_excel = pd.read_excel(url_excel, sheet_name = 'Efficiency')
|
73 |
+
df_excel = df_excel.rename(columns = {'All':'i', 'Unnamed: 1':'Efficiency'})
|
74 |
+
df_excel = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left')
|
75 |
+
df_excel = df_excel.fillna(0)
|
76 |
+
df_excel = df_excel.set_index('i')
|
77 |
+
eff_i = df_excel.iloc[:,0].to_xarray()
|
78 |
+
|
79 |
+
## Variable costs
|
80 |
+
# Fuel costs
|
81 |
+
df_excel = pd.read_excel(url_excel, sheet_name = 'FuelCosts')
|
82 |
+
df_excel = df_excel.rename(columns = {'Conventionals':'i', 'Unnamed: 1':'FuelCosts'})
|
83 |
+
df_excel = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left')
|
84 |
+
df_excel = df_excel.fillna(0)
|
85 |
+
df_excel = df_excel.set_index('i')
|
86 |
+
c_fuel_i = df_excel.iloc[:,0].to_xarray()
|
87 |
+
# Apply slider value
|
88 |
+
#c_fuel_i.loc[dict(i = 'Fossil Gas')] = price_gas
|
89 |
+
#c_fuel_i.loc[dict(i = 'H2')] = price_h2
|
90 |
+
|
91 |
+
# Other var. costs
|
92 |
+
df_excel = pd.read_excel(url_excel, sheet_name = 'OtherVarCosts')
|
93 |
+
df_excel = df_excel.rename(columns = {'Conventionals':'i', 'Unnamed: 1':'OtherVarCosts'})
|
94 |
+
df_excel = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left')
|
95 |
+
df_excel = df_excel.fillna(0)
|
96 |
+
df_excel = df_excel.set_index('i')
|
97 |
+
c_other_i = df_excel.iloc[:,0].to_xarray()
|
98 |
+
|
99 |
+
# Investment costs
|
100 |
+
df_excel = pd.read_excel(url_excel, sheet_name = 'InvCosts')
|
101 |
+
df_excel = df_excel.rename(columns = {'All':'i', 'Unnamed: 1':'InvCosts'})
|
102 |
+
df_excel = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left')
|
103 |
+
df_excel = df_excel.fillna(0)
|
104 |
+
df_excel = df_excel.set_index('i')
|
105 |
+
c_inv_i = df_excel.iloc[:,0].to_xarray()*1000*0.1 # kw to MW and annuity factor
|
106 |
+
|
107 |
+
# Emission factor
|
108 |
+
df_excel = pd.read_excel(url_excel, sheet_name = 'EmFactor')
|
109 |
+
df_excel = df_excel.rename(columns = {'Conventionals':'i', 'Unnamed: 1':'EmFactor'})
|
110 |
+
df_excel = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left')
|
111 |
+
df_excel = df_excel.fillna(0)
|
112 |
+
df_excel = df_excel.set_index('i')
|
113 |
+
co2_factor_i = df_excel.iloc[:,0].to_xarray()
|
114 |
+
|
115 |
+
## Calculation of variable costs
|
116 |
+
c_var_i = (c_fuel_i.sel(i = iConv) + p_co2 * co2_factor_i.sel(i = iConv)) / eff_i.sel(i = iConv) + c_other_i.sel(i = iConv)
|
117 |
+
|
118 |
+
# RES capacity factors
|
119 |
+
#df_excel = pd.read_excel(url_excel, sheet_name = 'RES',header=[0,1])
|
120 |
+
#df_excel = pd.read_excel(url_excel, sheet_name = 'RES', index_col=['Timesteps'], columns=['PV', 'WindOn', 'WindOff', 'RoR'])
|
121 |
+
df_excel = pd.read_excel(url_excel, sheet_name = 'RES')
|
122 |
+
df_excel = df_excel.set_index(['Timesteps'])
|
123 |
+
df_test = df_excel
|
124 |
+
df_excel = df_excel.stack()
|
125 |
+
#df_excel = df_excel.rename(columns={'PV', 'WindOn', 'WindOff', 'RoR'})
|
126 |
+
df_test2 = df_excel
|
127 |
+
#df_excel = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left')
|
128 |
+
#df_excel = df_excel.fillna(0)
|
129 |
+
|
130 |
+
#df_test = df_excel.set_index(['Timesteps', 'PV', 'WindOn', 'WindOff', 'RoR']).stack([0])
|
131 |
+
#df_test.index = df_test.index.set_names(['t','i'])
|
132 |
+
s_t_r_iRes = df_excel.to_xarray().rename({'level_1': 'i','Timesteps':'t'})
|
133 |
+
|
134 |
+
#s_t_r_iRes = df_excel.iloc[:,0].to_xarray()
|
135 |
+
|
136 |
+
# Base capacities
|
137 |
+
df_excel = pd.read_excel(url_excel, sheet_name = 'InstalledCap')
|
138 |
+
df_excel = df_excel.rename(columns = {'All':'i', 'Unnamed: 1':'InstalledCap'})
|
139 |
+
df_excel = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left')
|
140 |
+
df_excel = df_excel.fillna(0)
|
141 |
+
df_excel = df_excel.set_index('i')
|
142 |
+
K_0_i = df_excel.iloc[:,0].to_xarray()
|
143 |
+
|
144 |
+
# Energy-to-power ratio storages
|
145 |
+
df_excel = pd.read_excel(url_excel, sheet_name = 'E2P')
|
146 |
+
df_excel = df_excel.rename(columns = {'Storage':'i', 'Unnamed: 1':'E2P ratio'})
|
147 |
+
#df_excel = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left')
|
148 |
+
df_excel = df_excel.fillna(0)
|
149 |
+
df_excel = df_excel.set_index('i')
|
150 |
+
e2p_iSto = df_excel.iloc[:,0].to_xarray()
|
151 |
+
|
152 |
+
# Inflow for hydro reservoir
|
153 |
+
df_excel = pd.read_excel(url_excel, sheet_name = 'HydroInflow')
|
154 |
+
df_excel = df_excel.rename(columns = {'Timesteps':'t', 'Hydro Water Reservoir':'Inflow'})
|
155 |
+
df_excel = df_excel.fillna(0)
|
156 |
+
df_excel = df_excel.set_index('t')
|
157 |
+
h_t = df_excel.iloc[:,0].to_xarray()
|
158 |
+
|
159 |
+
|
160 |
+
|
161 |
+
sets_dict = {}
|
162 |
+
params_dict = {}
|
163 |
+
# Append parameters to the dictionary
|
164 |
+
sets_dict['t'] = t
|
165 |
+
sets_dict['i'] = i
|
166 |
+
sets_dict['iSto'] = iSto
|
167 |
+
sets_dict['iConv'] = iConv
|
168 |
+
sets_dict['iPtG'] = iPtG
|
169 |
+
sets_dict['iRes'] = iRes
|
170 |
+
sets_dict['iHyRes'] = iHyRes
|
171 |
+
# Append parameters to the dictionary
|
172 |
+
params_dict['l_co2'] = l_co2
|
173 |
+
params_dict['p_co2'] = p_co2
|
174 |
+
params_dict['dt'] = dt
|
175 |
+
params_dict['D_t'] = D_t
|
176 |
+
params_dict['eff_i'] = eff_i
|
177 |
+
params_dict['c_fuel_i'] = c_fuel_i
|
178 |
+
params_dict['c_other_i'] = c_other_i
|
179 |
+
params_dict['c_inv_i'] = c_inv_i
|
180 |
+
params_dict['co2_factor_i'] = co2_factor_i
|
181 |
+
params_dict['c_var_i'] = c_var_i
|
182 |
+
params_dict['s_t_r_iRes'] = s_t_r_iRes
|
183 |
+
params_dict['K_0_i'] = K_0_i
|
184 |
+
params_dict['e2p_iSto'] = e2p_iSto
|
185 |
+
params_dict['h_t'] = h_t
|
186 |
+
|
187 |
+
if write_to_pickle_flag:
|
188 |
+
save_to_pickle(sets_dict, params_dict)
|
189 |
+
|
190 |
+
return sets_dict, params_dict
|
191 |
+
|
192 |
+
|
193 |
+
# %%
|
194 |
+
# # Example usage:
|
195 |
+
# url_excel = "Input_Jahr_2021.xlsx" # Replace with your actual file path
|
196 |
+
# limit_co2 = 0.5
|
197 |
+
# price_co2 = 50
|
198 |
+
# price_gas = 3
|
199 |
+
# price_h2 = 5
|
200 |
+
|
201 |
+
# sets, params = load_data_from_excel(url_excel,write_to_pickle_flag=True)
|
202 |
+
|
203 |
+
# # %%
|
204 |
+
# sets, params = load_data_from_excel(url_excel,load_from_pickle_flag=True)
|
205 |
+
# # %%
|