import gradio as gr from unsloth import FastLanguageModel from transformers import TextStreamer import torch # Function to load the model def load_model(model_name, max_seq_length, dtype, load_in_4bit, token=None): model, tokenizer = FastLanguageModel.from_pretrained( model_name=model_name, max_seq_length=max_seq_length, dtype=dtype, load_in_4bit=load_in_4bit, token=token ) FastLanguageModel.for_inference(model) # Enable native 2x faster inference return model, tokenizer # Load the model model_name = "unsloth/Phi-3-mini-4k-instruct" token = None # Replace with your token if required model, tokenizer = load_model(model_name, max_seq_length=2048, dtype=None, load_in_4bit=True, token=token) def generate_response(instruction, input_text, max_new_tokens): alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {} ### Input: {} ### Response: {}""" inputs = tokenizer( [ alpaca_prompt.format( instruction, # instruction input_text, # input "" # output - leave this blank for generation! ) ], return_tensors="pt").to("cuda") text_streamer = TextStreamer(tokenizer) output = model.generate(**inputs, streamer=text_streamer, max_new_tokens=max_new_tokens) response = tokenizer.decode(output[0], skip_special_tokens=True) return response # Gradio Interface iface = gr.Interface( fn=generate_response, inputs=[ gr.Textbox(lines=2, label="Instruction", placeholder="Continue the Fibonacci sequence."), gr.Textbox(lines=2, label="Input", placeholder="1, 1, 2, 3, 5, 8"), gr.Slider(1, 2048, value=128, step=1, label="Max New Tokens") ], outputs=gr.Textbox(label="Response", lines=10), title="Language Model Chat UI" ) iface.launch()