Spaces:
Running
Running
from os import O_ACCMODE | |
import gradio as gr | |
import joblib | |
from transformers import pipeline | |
import requests.exceptions | |
from huggingface_hub import HfApi, hf_hub_download | |
from huggingface_hub.repocard import metadata_load | |
# work around for error, not happy really | |
# import os | |
# os.environ['KMP_DUPLICATE_LIB_OK']='True' | |
app = gr.Blocks() | |
model_1 = "juliensimon/distilbert-amazon-shoe-reviews" | |
model_2 = "juliensimon/distilbert-amazon-shoe-reviews" | |
def load_agent(model_id_1, model_id_2): | |
""" | |
This function load the agent's results | |
""" | |
# Load the metrics | |
metadata_1 = get_metadata(model_id_1) | |
# get predictions | |
predictions_1 = predict(model_id_1) | |
# Get the accuracy | |
# results_1 = parse_metrics_accuracy(metadata_1) | |
# Load the metrics | |
metadata_2 = get_metadata(model_id_2) | |
# get predictions | |
predictions_2 = predict(model_id_2) | |
# Get the accuracy | |
# results_2 = parse_metrics_accuracy(metadata_2) | |
return model_id_1, predictions_1, model_id_2, predictions_2 | |
# def parse_metrics_accuracy(meta): | |
# if "model-index" not in meta: | |
# return None | |
# result = meta["model-index"][0]["results"] | |
# metrics = result[0]["metrics"] | |
# accuracy = metrics[0]["value"] | |
# return accuracy | |
def get_metadata(model_id): | |
""" | |
Get the metadata of the model repo | |
:param model_id: | |
:return: metadata | |
""" | |
try: | |
readme_path = hf_hub_download(model_id, filename="README.md") | |
metadata = metadata_load(readme_path) | |
print(metadata) | |
return metadata | |
except requests.exceptions.HTTPError: | |
return None | |
# classifier = pipeline("text-classification", model="juliensimon/distilbert-amazon-shoe-reviews") | |
def predict(review, model_id): | |
classifier = pipeline("text-classification", model=model_id) | |
prediction = classifier(review) | |
print(prediction) | |
stars = prediction[0]['label'] | |
stars = (int)(stars.split('_')[1])+1 | |
score = 100*prediction[0]['score'] | |
return "{} {:.0f}%".format("\U00002B50"*stars, score) | |
with app: | |
gr.Markdown( | |
""" | |
# Compare Sentiment Analysis Models | |
Type text to predict sentiment. | |
""") | |
with gr.Row(): | |
inp_1= gr.Textbox(label="Type text here.",placeholder="The customer service was satisfactory.") | |
out_2 = gr.Textbox(label="Prediction") | |
# gr.Markdown( | |
# """ | |
# Model Predictions | |
# """) | |
with gr.Row(): | |
model1_input = gr.Textbox(label="Model 1") | |
with gr.Row(): | |
btn = gr.Button("Prediction for Model 1") | |
btn.click(fn=predict(model_1), inputs=inp_1, outputs=out_2) | |
with gr.Row(): | |
model2_input = gr.Textbox(label="Model 2") | |
with gr.Row(): | |
btn = gr.Button("Prediction for Model 2") | |
btn.click(fn=predict(model_2), inputs=inp_1, outputs=out_2) | |
app_button.click(load_agent, inputs=[model1_input, model2_input], outputs=[model1_name, model1_score_output, model2_name, model2_score_output]) | |
# examples = gr.Examples(examples=[["juliensimon/distilbert-amazon-shoe-reviews","juliensimon/distilbert-amazon-shoe-reviews"]], | |
# inputs=[model1_input, model2_input]) | |
app.launch() |