Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,4 @@
|
|
1 |
|
2 |
-
# https://huggingface.co/spaces/CK42/sentiment-model-comparison/blob/main/app.py
|
3 |
-
|
4 |
# import sklearn
|
5 |
from os import O_ACCMODE
|
6 |
import gradio as gr
|
@@ -43,8 +41,6 @@ def get_metadata(model_id):
|
|
43 |
return metadata
|
44 |
except requests.exceptions.HTTPError:
|
45 |
return None
|
46 |
-
|
47 |
-
# classifier = pipeline("text-classification", model="juliensimon/distilbert-amazon-shoe-reviews")
|
48 |
|
49 |
def predict(review, model_id):
|
50 |
classifier = pipeline("text-classification", model=model_id)
|
@@ -66,11 +62,10 @@ with app:
|
|
66 |
inp_1= gr.Textbox(label="Type text here.",placeholder="The customer service was satisfactory.")
|
67 |
out_2 = gr.Textbox(label="Prediction")
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
# """)
|
74 |
with gr.Row():
|
75 |
model1_input = gr.Textbox(label="Model 1")
|
76 |
with gr.Row():
|
@@ -83,7 +78,7 @@ with app:
|
|
83 |
model2_input = gr.Textbox(label="Model 2")
|
84 |
with gr.Row():
|
85 |
btn = gr.Button("Prediction for Model 2")
|
86 |
-
btn.click(fn=
|
87 |
|
88 |
|
89 |
# app_button.click(load_agent, inputs=[model1_input, model2_input], outputs=[model1_name, model1_score_output, model2_name, model2_score_output])
|
|
|
1 |
|
|
|
|
|
2 |
# import sklearn
|
3 |
from os import O_ACCMODE
|
4 |
import gradio as gr
|
|
|
41 |
return metadata
|
42 |
except requests.exceptions.HTTPError:
|
43 |
return None
|
|
|
|
|
44 |
|
45 |
def predict(review, model_id):
|
46 |
classifier = pipeline("text-classification", model=model_id)
|
|
|
62 |
inp_1= gr.Textbox(label="Type text here.",placeholder="The customer service was satisfactory.")
|
63 |
out_2 = gr.Textbox(label="Prediction")
|
64 |
|
65 |
+
gr.Markdown(
|
66 |
+
"""
|
67 |
+
Model Predictions
|
68 |
+
""")
|
|
|
69 |
with gr.Row():
|
70 |
model1_input = gr.Textbox(label="Model 1")
|
71 |
with gr.Row():
|
|
|
78 |
model2_input = gr.Textbox(label="Model 2")
|
79 |
with gr.Row():
|
80 |
btn = gr.Button("Prediction for Model 2")
|
81 |
+
btn.click(fn=load_agent(model_id_2), inputs=inp_1, outputs=out_2)
|
82 |
|
83 |
|
84 |
# app_button.click(load_agent, inputs=[model1_input, model2_input], outputs=[model1_name, model1_score_output, model2_name, model2_score_output])
|