CK42 commited on
Commit
d3d7595
·
1 Parent(s): 7af13f4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -11
app.py CHANGED
@@ -17,7 +17,7 @@ def load_agent(model_id_1, model_id_2):
17
  results_1 = parse_metrics_accuracy(metadata_1)
18
 
19
  # Load the video
20
- video_path_1 = hf_hub_download(model_id_1, filename="replay.mp4")
21
 
22
  # Load the metrics
23
  metadata_2 = get_metadata(model_id_2)
@@ -26,9 +26,9 @@ def load_agent(model_id_1, model_id_2):
26
  results_2 = parse_metrics_accuracy(metadata_2)
27
 
28
  # Load the video
29
- video_path_2 = hf_hub_download(model_id_2, filename="replay.mp4")
30
 
31
- return model_id_1, video_path_1, results_1, model_id_2, video_path_2, results_2
32
 
33
  def parse_metrics_accuracy(meta):
34
  if "model-index" not in meta:
@@ -58,7 +58,7 @@ def get_metadata(model_id):
58
  with app:
59
  gr.Markdown(
60
  """
61
- # Compare Deep Reinforcement Learning Agents 🤖
62
 
63
  Type two models id you want to compare or check examples below.
64
  """)
@@ -70,19 +70,17 @@ with app:
70
  with gr.Row():
71
  with gr.Column():
72
  model1_name = gr.Markdown()
73
- model1_video_output = gr.Video()
74
  model1_score_output = gr.Textbox(label="Mean Reward +/- Std Reward")
75
  with gr.Column():
76
  model2_name = gr.Markdown()
77
- model2_video_output = gr.Video()
78
  model2_score_output = gr.Textbox(label="Mean Reward +/- Std Reward")
79
 
80
- app_button.click(load_agent, inputs=[model1_input, model2_input], outputs=[model1_name, model1_video_output, model1_score_output, model2_name, model2_video_output, model2_score_output])
81
 
82
- examples = gr.Examples(examples=[["sb3/a2c-AntBulletEnv-v0","sb3/ppo-AntBulletEnv-v0"],
83
- ["ThomasSimonini/a2c-AntBulletEnv-v0", "sb3/a2c-AntBulletEnv-v0"],
84
- ["sb3/dqn-SpaceInvadersNoFrameskip-v4", "sb3/a2c-SpaceInvadersNoFrameskip-v4"],
85
- ["ThomasSimonini/ppo-QbertNoFrameskip-v4","sb3/ppo-QbertNoFrameskip-v4"]],
86
  inputs=[model1_input, model2_input])
87
 
88
 
 
17
  results_1 = parse_metrics_accuracy(metadata_1)
18
 
19
  # Load the video
20
+ #video_path_1 = hf_hub_download(model_id_1, filename="replay.mp4")
21
 
22
  # Load the metrics
23
  metadata_2 = get_metadata(model_id_2)
 
26
  results_2 = parse_metrics_accuracy(metadata_2)
27
 
28
  # Load the video
29
+ #video_path_2 = hf_hub_download(model_id_2, filename="replay.mp4")
30
 
31
+ return model_id_1 results_1, model_id_2, results_2
32
 
33
  def parse_metrics_accuracy(meta):
34
  if "model-index" not in meta:
 
58
  with app:
59
  gr.Markdown(
60
  """
61
+ # Compare Sentiment Analysis Models
62
 
63
  Type two models id you want to compare or check examples below.
64
  """)
 
70
  with gr.Row():
71
  with gr.Column():
72
  model1_name = gr.Markdown()
73
+ #model1_video_output = gr.Video()
74
  model1_score_output = gr.Textbox(label="Mean Reward +/- Std Reward")
75
  with gr.Column():
76
  model2_name = gr.Markdown()
77
+ #model2_video_output = gr.Video()
78
  model2_score_output = gr.Textbox(label="Mean Reward +/- Std Reward")
79
 
80
+ app_button.click(load_agent, inputs=[model1_input, model2_input], outputs=[model1_name, model1_score_output, model2_name, model2_score_output])
81
 
82
+ examples = gr.Examples(examples=[["scikit-learn/sentiment-analysis","microsoft/Multilingual-MiniLM-L12-H384"],
83
+ ["distilbert-base-uncased-finetuned-sst-2-english", "microsoft/Multilingual-MiniLM-L12-H384"],
 
 
84
  inputs=[model1_input, model2_input])
85
 
86