Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,63 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from huggingface_hub import InferenceClient
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
)
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
|
|
31 |
messages,
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
59 |
)
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
demo.launch()
|
|
|
1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
2 |
+
import torch
|
3 |
import gradio as gr
|
|
|
4 |
|
5 |
+
# Set the device
|
6 |
+
device = "cpu" # replace with your device: "cpu", "cuda", "mps"
|
7 |
+
|
8 |
+
# Initialize model and tokenizer
|
9 |
+
peft_model_id = "CMLM/ZhongJing-2-1_8b"
|
10 |
+
base_model_id = "Qwen/Qwen1.5-1.8B-Chat"
|
11 |
+
model = AutoModelForCausalLM.from_pretrained(base_model_id, device_map="auto")
|
12 |
+
model.load_adapter(peft_model_id)
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
14 |
+
"CMLM/ZhongJing-2-1_8b",
|
15 |
+
padding_side="right",
|
16 |
+
trust_remote_code=True,
|
17 |
+
pad_token=''
|
18 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
def get_model_response(question):
|
21 |
+
# Create the prompt without context
|
22 |
+
prompt = f"Question: {question}"
|
23 |
+
messages = [
|
24 |
+
{"role": "system", "content": "You are a helpful TCM medical assistant named 仲景中医大语言模型, created by 医哲未来 of Fudan University."},
|
25 |
+
{"role": "user", "content": prompt}
|
26 |
+
]
|
27 |
|
28 |
+
# Prepare the input
|
29 |
+
text = tokenizer.apply_chat_template(
|
30 |
messages,
|
31 |
+
tokenize=False,
|
32 |
+
add_generation_prompt=True
|
33 |
+
)
|
34 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(device)
|
35 |
+
|
36 |
+
# Generate the response
|
37 |
+
generated_ids = model.generate(
|
38 |
+
model_inputs.input_ids,
|
39 |
+
max_new_tokens=512
|
40 |
+
)
|
41 |
+
generated_ids = [
|
42 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
43 |
+
]
|
44 |
+
|
45 |
+
# Decode the response
|
46 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
47 |
+
return response
|
48 |
+
|
49 |
+
# Define a Gradio interface without the context parameter
|
50 |
+
def chat_interface(question):
|
51 |
+
response = get_model_response(question)
|
52 |
+
return response
|
53 |
+
|
54 |
+
iface = gr.Interface(
|
55 |
+
fn=chat_interface,
|
56 |
+
inputs=["text"],
|
57 |
+
outputs="text",
|
58 |
+
title="仲景GPT-V2-1.8B",
|
59 |
+
description="博极医源,精勤不倦。Unlocking the Wisdom of Traditional Chinese Medicine with AI."
|
60 |
)
|
61 |
|
62 |
+
# Launch the interface with sharing enabled
|
63 |
+
iface.launch(share=True)
|
|