Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -5,130 +5,125 @@ from typing import Iterator
|
|
5 |
import gradio as gr
|
6 |
import spaces
|
7 |
import torch
|
8 |
-
from transformers import
|
9 |
|
10 |
MAX_MAX_NEW_TOKENS = 2048
|
11 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
12 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
13 |
|
14 |
DESCRIPTION = """\
|
15 |
-
|
16 |
-
|
17 |
"""
|
18 |
|
19 |
LICENSE = """
|
20 |
<p/>
|
21 |
---
|
22 |
-
|
|
|
23 |
"""
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
"
|
31 |
-
|
32 |
-
|
33 |
-
pad_token=''
|
34 |
-
)
|
35 |
|
36 |
-
@spaces.
|
37 |
def generate(
|
38 |
message: str,
|
|
|
|
|
39 |
max_new_tokens: int = 1024,
|
40 |
temperature: float = 0.6,
|
41 |
-
top_p: float = 0.9,
|
42 |
top_k: int = 50,
|
43 |
repetition_penalty: float = 1.2,
|
44 |
) -> Iterator[str]:
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
{
|
50 |
-
|
|
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
62 |
|
63 |
-
|
64 |
-
generate_kwargs = dict(
|
65 |
-
input_ids=input_ids,
|
66 |
-
streamer=streamer,
|
67 |
-
max_new_tokens=max_new_tokens,
|
68 |
-
do_sample=True,
|
69 |
-
top_p=top_p,
|
70 |
-
top_k=top_k,
|
71 |
-
temperature=temperature,
|
72 |
-
num_beams=1,
|
73 |
-
repetition_penalty=repetition_penalty,
|
74 |
-
)
|
75 |
-
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
76 |
t.start()
|
77 |
|
78 |
outputs = []
|
79 |
-
for text in
|
80 |
-
outputs.append(text)
|
81 |
yield "".join(outputs)
|
82 |
|
83 |
-
chat_interface = gr.
|
84 |
fn=generate,
|
85 |
-
|
86 |
-
gr.
|
87 |
-
gr.
|
88 |
label="Max new tokens",
|
89 |
-
minimum=1,
|
90 |
maximum=MAX_MAX_NEW_TOKENS,
|
91 |
step=1,
|
92 |
value=DEFAULT_MAX_NEW_TOKENS,
|
93 |
),
|
94 |
-
gr.
|
95 |
label="Temperature",
|
96 |
minimum=0.1,
|
97 |
maximum=4.0,
|
98 |
-
step=0.1,
|
99 |
value=0.6,
|
100 |
),
|
101 |
-
gr.
|
102 |
label="Top-p (nucleus sampling)",
|
103 |
minimum=0.05,
|
104 |
maximum=1.0,
|
105 |
step=0.05,
|
106 |
value=0.9,
|
107 |
),
|
108 |
-
gr.
|
109 |
label="Top-k",
|
110 |
minimum=1,
|
111 |
maximum=1000,
|
112 |
step=1,
|
113 |
value=50,
|
114 |
),
|
115 |
-
gr.
|
116 |
-
label="Repetition penalty",
|
117 |
minimum=1.0,
|
118 |
maximum=2.0,
|
119 |
step=0.05,
|
120 |
value=1.2,
|
121 |
),
|
122 |
],
|
123 |
-
|
124 |
-
title="仲景GPT-V2-1.8B",
|
125 |
-
description=DESCRIPTION,
|
126 |
-
allow_flagging=False,
|
127 |
examples=[
|
128 |
["请问气虚体质有哪些症状表现?"],
|
129 |
["简单介绍一下中医的五行学说。"],
|
130 |
["桑螵蛸是什么?有什么功效作用?"],
|
131 |
-
|
|
|
132 |
)
|
133 |
|
134 |
with gr.Blocks(css="style.css") as demo:
|
|
|
5 |
import gradio as gr
|
6 |
import spaces
|
7 |
import torch
|
8 |
+
from transformers import pipeline, AutoTokenizer
|
9 |
|
10 |
MAX_MAX_NEW_TOKENS = 2048
|
11 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
12 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
13 |
|
14 |
DESCRIPTION = """\
|
15 |
+
# ZhongJing 2 1.8B Merge
|
16 |
+
This Space demonstrates model [CMLL/ZhongJing-2-1_8b-merge](https://huggingface.co/CMLL/ZhongJing-2-1_8b-merge) for text generation. Feel free to play with it, or duplicate to run generations without a queue! If you want to run your own service, you can also [deploy the model on Inference Endpoints](https://huggingface.co/inference-endpoints).
|
17 |
"""
|
18 |
|
19 |
LICENSE = """
|
20 |
<p/>
|
21 |
---
|
22 |
+
As a derivative work of [CMLL/ZhongJing-2-1_8b-merge](https://huggingface.co/CMLL/ZhongJing-2-1_8b-merge),
|
23 |
+
this demo is governed by the original [license](https://huggingface.co/CMLL/ZhongJing-2-1_8b-merge/LICENSE).
|
24 |
"""
|
25 |
|
26 |
+
if not torch.cuda.is_available():
|
27 |
+
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
|
28 |
+
|
29 |
+
if torch.cuda.is_available():
|
30 |
+
model_id = "CMLL/ZhongJing-2-1_8b-merge"
|
31 |
+
pipe = pipeline("text-generation", model=model_id)
|
32 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
33 |
+
tokenizer.use_default_system_prompt = False
|
|
|
|
|
34 |
|
35 |
+
@spaces.GPU
|
36 |
def generate(
|
37 |
message: str,
|
38 |
+
chat_history: list[tuple[str, str]],
|
39 |
+
system_prompt: str,
|
40 |
max_new_tokens: int = 1024,
|
41 |
temperature: float = 0.6,
|
42 |
+
top_p: float = 0.9,
|
43 |
top_k: int = 50,
|
44 |
repetition_penalty: float = 1.2,
|
45 |
) -> Iterator[str]:
|
46 |
+
conversation = []
|
47 |
+
if system_prompt:
|
48 |
+
conversation.append({"role": "system", "content": system_prompt})
|
49 |
+
for user, assistant in chat_history:
|
50 |
+
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
|
51 |
+
conversation.append({"role": "user", "content": message})
|
52 |
|
53 |
+
input_text = "\n".join([f"{entry['role']}: {entry['content']}" for entry in conversation])
|
54 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
55 |
+
if inputs.input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
56 |
+
inputs = {k: v[:, -MAX_INPUT_TOKEN_LENGTH:] for k, v in inputs.items()}
|
57 |
+
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
58 |
+
inputs = inputs.to(pipe.device)
|
59 |
|
60 |
+
generate_kwargs = {
|
61 |
+
"max_new_tokens": max_new_tokens,
|
62 |
+
"do_sample": True,
|
63 |
+
"top_p": top_p,
|
64 |
+
"top_k": top_k,
|
65 |
+
"temperature": temperature,
|
66 |
+
"repetition_penalty": repetition_penalty,
|
67 |
+
}
|
68 |
|
69 |
+
def run_generation():
|
70 |
+
return pipe(inputs.input_ids, **generate_kwargs)
|
|
|
71 |
|
72 |
+
t = Thread(target=run_generation)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
t.start()
|
74 |
|
75 |
outputs = []
|
76 |
+
for text in run_generation():
|
77 |
+
outputs.append(text['generated_text'])
|
78 |
yield "".join(outputs)
|
79 |
|
80 |
+
chat_interface = gr.ChatInterface(
|
81 |
fn=generate,
|
82 |
+
additional_inputs=[
|
83 |
+
gr.Textbox(label="System prompt", lines=6),
|
84 |
+
gr.Slider(
|
85 |
label="Max new tokens",
|
86 |
+
minimum=1,
|
87 |
maximum=MAX_MAX_NEW_TOKENS,
|
88 |
step=1,
|
89 |
value=DEFAULT_MAX_NEW_TOKENS,
|
90 |
),
|
91 |
+
gr.Slider(
|
92 |
label="Temperature",
|
93 |
minimum=0.1,
|
94 |
maximum=4.0,
|
95 |
+
step=0.1,
|
96 |
value=0.6,
|
97 |
),
|
98 |
+
gr.Slider(
|
99 |
label="Top-p (nucleus sampling)",
|
100 |
minimum=0.05,
|
101 |
maximum=1.0,
|
102 |
step=0.05,
|
103 |
value=0.9,
|
104 |
),
|
105 |
+
gr.Slider(
|
106 |
label="Top-k",
|
107 |
minimum=1,
|
108 |
maximum=1000,
|
109 |
step=1,
|
110 |
value=50,
|
111 |
),
|
112 |
+
gr.Slider(
|
113 |
+
label="Repetition penalty",
|
114 |
minimum=1.0,
|
115 |
maximum=2.0,
|
116 |
step=0.05,
|
117 |
value=1.2,
|
118 |
),
|
119 |
],
|
120 |
+
stop_btn=None,
|
|
|
|
|
|
|
121 |
examples=[
|
122 |
["请问气虚体质有哪些症状表现?"],
|
123 |
["简单介绍一下中医的五行学说。"],
|
124 |
["桑螵蛸是什么?有什么功效作用?"],
|
125 |
+
["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
|
126 |
+
],
|
127 |
)
|
128 |
|
129 |
with gr.Blocks(css="style.css") as demo:
|