Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,18 @@
|
|
1 |
-
import spaces
|
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
4 |
-
import gradio as gr
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
device = torch.device("cuda:0" if USE_CUDA else "cpu")
|
9 |
|
10 |
-
#
|
|
|
|
|
|
|
11 |
peft_model_id = "CMLM/ZhongJing-2-1_8b"
|
12 |
base_model_id = "Qwen/Qwen1.5-1.8B-Chat"
|
13 |
-
model = AutoModelForCausalLM.from_pretrained(base_model_id, device_map="
|
14 |
model.load_adapter(peft_model_id)
|
15 |
tokenizer = AutoTokenizer.from_pretrained(
|
16 |
"CMLM/ZhongJing-2-1_8b",
|
@@ -19,57 +21,44 @@ tokenizer = AutoTokenizer.from_pretrained(
|
|
19 |
pad_token=''
|
20 |
)
|
21 |
|
22 |
-
@
|
23 |
-
def
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
input = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
31 |
-
model_inputs = tokenizer([input], return_tensors="pt").to(device)
|
32 |
-
print("Debug: Model inputs prepared successfully.")
|
33 |
-
|
34 |
-
generated_ids = model.generate(model_inputs.input_ids, max_new_tokens=512)
|
35 |
-
print("Debug: Model generation completed successfully.")
|
36 |
-
|
37 |
-
generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)]
|
38 |
-
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
39 |
-
return response
|
40 |
-
except Exception as e:
|
41 |
-
print(f"Error during model invocation: {str(e)}")
|
42 |
-
raise
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
raise ValueError("The question must be a string.")
|
50 |
-
|
51 |
-
if chat_history is None or chat_history == []:
|
52 |
-
chat_history = [{"role": "system", "content": "You are a helpful TCM medical assistant named 仲景中医大语言模型, created by 医哲未来 of Fudan University."}]
|
53 |
-
|
54 |
-
chat_history.append({"role": "user", "content": question})
|
55 |
-
|
56 |
-
inputs = tokenizer.apply_chat_template(chat_history, tokenize=False, add_generation_prompt=True)
|
57 |
-
model_inputs = tokenizer([inputs], return_tensors="pt").to(device)
|
58 |
-
|
59 |
-
outputs = model.generate(model_inputs.input_ids, max_new_tokens=512)
|
60 |
-
generated_ids = outputs[:, model_inputs.input_ids.shape[-1]:]
|
61 |
-
response = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
62 |
-
|
63 |
-
chat_history.append({"role": "assistant", "content": response})
|
64 |
-
return chat_history
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
fn=single_turn_chat,
|
69 |
inputs=["text"],
|
70 |
outputs="text",
|
71 |
-
title="仲景GPT-V2-1.8B
|
72 |
-
description="Unlocking the Wisdom of Traditional Chinese Medicine with AI."
|
73 |
)
|
74 |
|
75 |
-
#
|
|
|
|
|
|
1 |
+
import spaces # Import spaces at the top
|
2 |
+
import gradio as gr
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
import torch
|
|
|
5 |
|
6 |
+
# Import the GPU decorator
|
7 |
+
from spaces import GPU
|
|
|
8 |
|
9 |
+
# Set the device to use GPU
|
10 |
+
device = "cuda" # Use CUDA for GPU
|
11 |
+
|
12 |
+
# Initialize model and tokenizer
|
13 |
peft_model_id = "CMLM/ZhongJing-2-1_8b"
|
14 |
base_model_id = "Qwen/Qwen1.5-1.8B-Chat"
|
15 |
+
model = AutoModelForCausalLM.from_pretrained(base_model_id, device_map={"cuda": 0})
|
16 |
model.load_adapter(peft_model_id)
|
17 |
tokenizer = AutoTokenizer.from_pretrained(
|
18 |
"CMLM/ZhongJing-2-1_8b",
|
|
|
21 |
pad_token=''
|
22 |
)
|
23 |
|
24 |
+
@GPU(duration=120) # Decorate with GPU usage and specify the duration
|
25 |
+
def get_model_response(question):
|
26 |
+
# Create the prompt without context
|
27 |
+
prompt = f"Question: {question}"
|
28 |
+
messages = [
|
29 |
+
{"role": "system", "content": "You are a helpful TCM medical assistant named 仲景中医大语言模型, created by 医哲未来 of Fudan University."},
|
30 |
+
{"role": "user", "content": prompt}
|
31 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
# Prepare the input
|
34 |
+
text = tokenizer.apply_chat_template(
|
35 |
+
messages,
|
36 |
+
tokenize=False,
|
37 |
+
add_generation_prompt=True
|
38 |
+
)
|
39 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(device)
|
40 |
|
41 |
+
# Generate the response
|
42 |
+
generated_ids = model.generate(
|
43 |
+
model_inputs.input_ids,
|
44 |
+
max_new_tokens=512
|
45 |
+
)
|
46 |
+
generated_ids = [
|
47 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
48 |
+
]
|
49 |
|
50 |
+
# Decode the response
|
51 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
52 |
+
return response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
+
iface = gr.Interface(
|
55 |
+
fn=get_model_response, # Directly use the decorated function
|
|
|
56 |
inputs=["text"],
|
57 |
outputs="text",
|
58 |
+
title="仲景GPT-V2-1.8B",
|
59 |
+
description="博极医源,精勤不倦。Unlocking the Wisdom of Traditional Chinese Medicine with AI."
|
60 |
)
|
61 |
|
62 |
+
# Launch the interface with sharing enabled
|
63 |
+
iface.launch(share=True)
|
64 |
+
|