|
import gradio as gr |
|
from gradio_imageslider import ImageSlider |
|
from loadimg import load_img |
|
import spaces |
|
from transformers import AutoModelForImageSegmentation |
|
import torch |
|
from torchvision import transforms |
|
|
|
|
|
|
|
|
|
|
|
birefnet = AutoModelForImageSegmentation.from_pretrained( |
|
"ZhengPeng7/BiRefNet", trust_remote_code=True |
|
) |
|
birefnet.to("cpu") |
|
|
|
transform_image = transforms.Compose( |
|
[ |
|
transforms.Resize((1024, 1024)), |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), |
|
] |
|
) |
|
|
|
def fn(image): |
|
im = load_img(image, output_type="pil") |
|
im = im.convert("RGB") |
|
origin = im.copy() |
|
processed_image = process(im) |
|
return (processed_image, origin) |
|
|
|
|
|
|
|
|
|
def process(image): |
|
image_size = image.size |
|
input_images = transform_image(image).unsqueeze(0).to("cpu") |
|
|
|
with torch.no_grad(): |
|
preds = birefnet(input_images)[-1].sigmoid().cpu() |
|
pred = preds[0].squeeze() |
|
pred_pil = transforms.ToPILImage()(pred) |
|
mask = pred_pil.resize(image_size) |
|
image.putalpha(mask) |
|
return image |
|
|
|
def process_file(f): |
|
name_path = f.rsplit(".", 1)[0] + ".png" |
|
im = load_img(f, output_type="pil") |
|
im = im.convert("RGB") |
|
transparent = process(im) |
|
transparent.save(name_path) |
|
return name_path |
|
|
|
slider1 = ImageSlider(label="Processed Image", type="pil") |
|
slider2 = ImageSlider(label="Processed Image from URL", type="pil") |
|
image_upload = gr.Image(label="Upload an image") |
|
image_file_upload = gr.Image(label="Upload an image", type="filepath") |
|
url_input = gr.Textbox(label="Paste an image URL") |
|
output_file = gr.File(label="Output PNG File") |
|
|
|
|
|
chameleon = load_img("butterfly.jpg", output_type="pil") |
|
url_example = "https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg" |
|
|
|
tab1 = gr.Interface(fn, inputs=image_upload, outputs=slider1, examples=[chameleon], api_name="image") |
|
tab2 = gr.Interface(fn, inputs=url_input, outputs=slider2, examples=[url_example], api_name="text") |
|
tab3 = gr.Interface(process_file, inputs=image_file_upload, outputs=output_file, examples=["butterfly.jpg"], api_name="png") |
|
|
|
demo_tabs = gr.TabbedInterface( |
|
[tab1, tab2, tab3], ["Image Upload", "URL Input", "File Output"], title="Background Removal Tool" |
|
) |
|
|
|
|
|
def verify_credentials(username, password): |
|
if username == "abc" and password == "1234": |
|
return True, "Successfully logged in." |
|
else: |
|
return False, "Invalid username or password." |
|
|
|
def login(username, password): |
|
success, message = verify_credentials(username, password) |
|
if success: |
|
return gr.update(visible=False), gr.update(visible=True), gr.update(value=message) |
|
else: |
|
return gr.update(visible=True), gr.update(visible=False), gr.update(value=message) |
|
|
|
|
|
with gr.Blocks() as demo: |
|
|
|
with gr.Row() as login_row: |
|
with gr.Column(): |
|
gr.Markdown("## Login") |
|
username = gr.Textbox(label="Username") |
|
password = gr.Textbox(label="Password", type="password") |
|
login_button = gr.Button("Login") |
|
login_message = gr.Textbox(label="Message", interactive=False, visible=False) |
|
|
|
|
|
with gr.Row(visible=False) as main_app: |
|
with gr.Column(): |
|
demo_tabs.render() |
|
|
|
|
|
login_button.click( |
|
login, |
|
inputs=[username, password], |
|
outputs=[login_row, main_app, login_message] |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch(show_error=True) |
|
|