lucio's picture
show expected result
5c2a535
raw
history blame
9.53 kB
from io import BytesIO
from typing import Tuple
import wave
import gradio as gr
import numpy as np
from pydub.audio_segment import AudioSegment
import requests
from os.path import exists
from stt import Model
import torch
from transformers import pipeline
import librosa
import torchaudio
from speechbrain.pretrained import EncoderClassifier
UI_STRINGS = {
"title": {
"es": "Reconocimiento de Dictado en Chatino, Mixteco, Totonaco y Español",
"en": "Speech recognition in Chatino, Mixtec, Totonac and Spanish",
},
"description": {
"es": "Una demo de identificar frases del español y de tres lenguas indígenas de México, y proveer el texto de cada una",
"en": "A demo of identifying phrases in Spanish and three Mexican indigenous languages, and providing transcripts of each",
},
"article": {
"es": "La identificación de lenguas usa el modelo"
" [lang-id-commonlanguage-ecapa de Speechbrain](https://huggingface.co/speechbrain/lang-id-commonlanguage_ecapa)"
" y aquí se supone que si la lengua no es español, debe ser la lengua indígena del contexto."
"\n\n"
"Chatino: Prueba de dictado a texto para el chatino de la sierra (Quiahije) "
" usando [el modelo entrenado por Bülent Özden](https://coqui.ai/chatino/bozden/v1.0.0)"
" con [los datos recopilados por Hilaria Cruz y sus colaboradores](https://gorilla.linguistlist.org/code/ctp/)."
"\n\n"
"Mixteco: Prueba de dictado a texto para el mixteco de Yoloxochitl,"
" usando [el modelo entrenado por Josh Meyer](https://coqui.ai/mixtec/jemeyer/v1.0.0/)"
" con [los datos recopilados por Rey Castillo y sus colaboradores](https://www.openslr.org/89)."
" \n\n"
"Totonaco: Prueba de dictado a texto para el totonaco de la sierra,"
" usando [el modelo entrenado por Bülent Özden](https://coqui.ai/totonac/bozden/v1.0.0)"
" con [los datos recopilados por Osbel López Francisco y sus colaboradores](https://www.openslr.org/107)."
" \n\n"
"Los ejemplos vienen del proyecto [DEMCA](https://demca.mesolex.org/) de Jonathan Amith. "
" Esta demo es basada en la de [Ukraniano](https://huggingface.co/spaces/robinhad/ukrainian-stt).",
"en": "The language identification uses the model"
" [lang-id-commonlanguage-ecapa from Speechbrain](https://huggingface.co/speechbrain/lang-id-commonlanguage_ecapa)"
" and here it is assumed that if the language is not Spanish, it must be the indigenous language of the context."
"\n\n"
"Chatino: Test of speech-to-text for Highland Chatino (Quiahije) "
" using [the model trained by Bülent Özden](https://coqui.ai/chatino/bozden/v1.0.0)"
" with [the data compiled by Hilaria Cruz and collaborators](https://gorilla.linguistlist.org/code/ctp/)."
"\n\n"
"Mixtec: Test of speech-to-text for Yoloxochitl Mixtec,"
" using [the model trained by Josh Meyer](https://coqui.ai/mixtec/jemeyer/v1.0.0/)"
" with [the data compiled by Rey Castillo and collaborators](https://www.openslr.org/89)."
"\n\n"
"Totonac: Test of speech-to-text for Highland Totonac,"
" using [the model trained by Bülent Özden](https://coqui.ai/chatino/bozden/v1.0.0)"
" with [the data compiled by Osbel López Francisco and collaborators](https://www.openslr.org/107)."
"\n\n"
"The examples come from the Jonathan Amith's [DEMCA](https://demca.mesolex.org/) project. "
" This demo is based on the one for [Ukrainian](https://huggingface.co/spaces/robinhad/ukrainian-stt).",
},
"languages": {
"mixteco": {
"es": "mixteco",
"en": "Mixtec",
},
"chatino": {
"es": "chatino",
"en": "Chatino",
},
"totonaco": {
"es": "totonaco",
"en": "Totonac",
},
"español": {
"es": "español",
"en": "Spanish",
},
"inglés": {
"es": "inglés",
"en": "English",
}
},
"labels": {
"target": {
"es": "Lengua principal",
"en": "Primary language",
},
"input": {
"es": "Audio",
"en": "Audio",
},
"output": {
"es": "Resultado",
"en": "Result",
}
}
}
# initialize language ID model
lang_classifier = EncoderClassifier.from_hparams(
source="speechbrain/lang-id-commonlanguage_ecapa",
savedir="pretrained_models/lang-id-commonlanguage_ecapa"
)
# download STT models
model_info = {
"mixteco": ("https://coqui.gateway.scarf.sh/mixtec/jemeyer/v1.0.0/model.tflite", "mixtec.tflite"),
"chatino": ("https://coqui.gateway.scarf.sh/chatino/bozden/v1.0.0/model.tflite", "chatino.tflite"),
"totonaco": ("https://coqui.gateway.scarf.sh/totonac/bozden/v1.0.0/model.tflite", "totonac.tflite"),
"español": ("jonatasgrosman/wav2vec2-large-xlsr-53-spanish", "spanish_xlsr"),
"inglés": ("facebook/wav2vec2-large-robust-ft-swbd-300h", "english_xlsr"),
}
def load_hf_model(model_path="facebook/wav2vec2-large-robust-ft-swbd-300h"):
return pipeline("automatic-speech-recognition", model=model_path)
def load_coqui_models(language):
model_path, file_name = model_info.get(language, ("", ""))
if not exists(file_name):
print(f"Downloading {model_path}")
r = requests.get(model_path, allow_redirects=True)
with open(file_name, 'wb') as file:
file.write(r.content)
else:
print(f"Found {file_name}. Skipping download...")
return Model(file_name)
STT_MODELS = {lang: load_hf_model(model_info[lang][0]) for lang in ("español",)}
for lang in ('mixteco', 'chatino', 'totonaco'):
STT_MODELS[lang] = load_coqui_models(lang)
def client(audio_data: np.array, sample_rate: int, default_lang: str):
output_audio = _convert_audio(audio_data, sample_rate)
waveform, _ = torchaudio.load(output_audio)
out_prob, score, index, text_lab = lang_classifier.classify_batch(waveform)
text_lab = text_lab[0]
output_audio.seek(0)
fin = wave.open(output_audio, 'rb')
coqui_audio = np.frombuffer(fin.readframes(fin.getnframes()), np.int16)
output_audio.seek(0)
hf_audio, _ = librosa.load(output_audio)
fin.close()
print(default_lang, text_lab)
if text_lab == 'Spanish':
text_lab = UI_STRINGS["languages"]['español'][ui_language]
asr_pipeline = STT_MODELS['español']
result = asr_pipeline(hf_audio, chunk_length_s=5, stride_length_s=1)['text']
else:
text_lab = UI_STRINGS["languages"][default_lang][ui_language]
ds = STT_MODELS[default_lang]
result = ds.stt(coqui_audio)
return f"{text_lab}: {result}"
def stt(default_lang: str, audio: Tuple[int, np.array], state=None):
sample_rate, audio = audio
use_scorer = False
recognized_result = client(audio, sample_rate, default_lang)
return recognized_result, state
def _convert_audio(audio_data: np.array, sample_rate: int):
source_audio = BytesIO()
source_audio.write(audio_data)
source_audio.seek(0)
output_audio = BytesIO()
wav_file = AudioSegment.from_raw(
source_audio,
channels=1,
sample_width=2,
frame_rate=sample_rate
)
wav_file.set_frame_rate(16000).set_channels(1).export(output_audio, "wav", codec="pcm_s16le")
output_audio.seek(0)
return output_audio
def iface(ui_language):
return gr.Interface(
fn=stt,
inputs=[
gr.inputs.Radio(choices=("chatino", "mixteco", "totonaco"), default="mixteco", label=UI_STRINGS["labels"]["target"][ui_language]),
gr.inputs.Audio(type="numpy", label=UI_STRINGS["labels"]["input"][ui_language], source="microphone", optional=False),
gr.inputs.State(label="Resultado esperado")
],
outputs=[
gr.outputs.Textbox(label=UI_STRINGS["labels"]["output"][ui_language]),
gr.outputs.State(label="Resultado esperado")
],
title=UI_STRINGS["title"][ui_language],
theme="huggingface",
description=UI_STRINGS["description"][ui_language],
examples=[["mixteco", "ejemplos/espanol1-Yolox_BotFl_CTB501-FEF537-EGS503_40202-Acanthaceae-Ruellia_2017-01-05-h.wav", "español: "],
["mixteco", "ejemplos/espanol2-Yolox_BotFl_CTB501-FEF537-EGS503_40202-Acanthaceae-Ruellia_2017-01-05-h.wav", "español: "],
["mixteco", "ejemplos/mixteco1-Yolox_BotFl_CTB501-FEF537-EGS503_40202-Acanthaceae-Ruellia_2017-01-05-h.wav", "mixteco: "],
["mixteco", "ejemplos/mixteco2-Yolox_BotFl_CTB501-FEF537-EGS503_40202-Acanthaceae-Ruellia_2017-01-05-h.wav", "mixteco: "],
["totonaco", "ejemplos/totonaco1-Zongo_Botan_Acanthaceae-Justicia-spicigera_SLC388-IPN389_2018-07-26-i.wav", "totonaco: "],
["totonaco", "ejemplos/totonaco2-Zongo_Botan_Acanthaceae-Justicia-spicigera_SLC388-IPN389_2018-07-26-i.wav", "totonaco: "]],
article=UI_STRINGS["title"][ui_language],
)
es_iface = iface('es')
es_iface.launch()