from io import BytesIO from typing import Tuple import wave import gradio as gr import numpy as np from pydub.audio_segment import AudioSegment import requests from os.path import exists from stt import Model import torchaudio from speechbrain.pretrained import EncoderClassifier # initialize language ID model lang_classifier = EncoderClassifier.from_hparams(source="speechbrain/lang-id-commonlanguage_ecapa", savedir="pretrained_models/lang-id-commonlanguage_ecapa") # download STT model storage_url = "https://coqui.gateway.scarf.sh/mixtec/jemeyer/v1.0.0" model_name = "model.tflite" model_link = f"{storage_url}/{model_name}" def client(audio_data: np.array, sample_rate: int, use_scorer=False): output_audio = _convert_audio(audio_data, sample_rate) out_prob, score, index, text_lab = lang_classifier.classify_file(output_audio) fin = wave.open(output_audio, 'rb') audio = np.frombuffer(fin.readframes(fin.getnframes()), np.int16) fin.close() ds = Model(model_name) if use_scorer: ds.enableExternalScorer("kenlm.scorer") result = ds.stt(audio) return f"{text_lab}: {result}" def download(url, file_name): if not exists(file_name): print(f"Downloading {file_name}") r = requests.get(url, allow_redirects=True) with open(file_name, 'wb') as file: file.write(r.content) else: print(f"Found {file_name}. Skipping download...") def stt(audio: Tuple[int, np.array]): sample_rate, audio = audio use_scorer = False recognized_result = client(audio, sample_rate, use_scorer) return recognized_result def _convert_audio(audio_data: np.array, sample_rate: int): source_audio = BytesIO() source_audio.write(audio_data) source_audio.seek(0) output_audio = BytesIO() wav_file = AudioSegment.from_raw( source_audio, channels=1, sample_width=2, frame_rate=sample_rate ) wav_file.set_frame_rate(16000).set_channels( 1).export(output_audio, "wav", codec="pcm_s16le") output_audio.seek(0) return output_audio iface = gr.Interface( fn=stt, inputs=[ gr.inputs.Audio(type="numpy", label=None, optional=False), ], outputs=gr.outputs.Textbox(label="Output"), title="Coqui STT Yoloxochitl Mixtec", theme="huggingface", description="Prueba de dictado a texto para el mixteco de Yoloxochitl," " usando [el modelo entrenado por Josh Meyer](https://coqui.ai/mixtec/jemeyer/v1.0.0/)" " con [los datos recopilados por Rey Castillo y sus colaboradores](https://www.openslr.org/89)." " Esta prueba es basada en la de [Ukraniano](https://huggingface.co/spaces/robinhad/ukrainian-stt)." " \n\n" "Speech-to-text demo for Yoloxochitl Mixtec," " using [the model trained by Josh Meyer](https://coqui.ai/mixtec/jemeyer/v1.0.0/)" " on [the corpus compiled by Rey Castillo and collaborators](https://www.openslr.org/89)." " This demo is based on the [Ukrainian STT demo](https://huggingface.co/spaces/robinhad/ukrainian-stt).", ) download(model_link, model_name) iface.launch()