DrishtiSharma
commited on
Commit
•
fd15a95
1
Parent(s):
2624173
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import librosa
|
3 |
+
from transformers import AutoFeatureExtractor, pipeline
|
4 |
+
|
5 |
+
|
6 |
+
def load_and_fix_data(input_file, model_sampling_rate):
|
7 |
+
speech, sample_rate = librosa.load(input_file)
|
8 |
+
if len(speech.shape) > 1:
|
9 |
+
speech = speech[:, 0] + speech[:, 1]
|
10 |
+
if sample_rate != model_sampling_rate:
|
11 |
+
speech = librosa.resample(speech, sample_rate, model_sampling_rate)
|
12 |
+
return speech
|
13 |
+
|
14 |
+
|
15 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained("jonatasgrosman/wav2vec2-large-xlsr-53-spanish")
|
16 |
+
sampling_rate = feature_extractor.sampling_rate
|
17 |
+
|
18 |
+
asr = pipeline("automatic-speech-recognition", model="jonatasgrosman/wav2vec2-large-xlsr-53-spanish")
|
19 |
+
|
20 |
+
|
21 |
+
def predict_and_ctc_lm_decode(input_file):
|
22 |
+
speech = load_and_fix_data(input_file, sampling_rate)
|
23 |
+
transcribed_text = asr(speech, chunk_length_s=5, stride_length_s=1)["text"]
|
24 |
+
pipe1 = pipeline("sentiment-analysis", model = "finiteautomata/beto-sentiment-analysis")
|
25 |
+
sentiment = pipe1(transcribed_text)
|
26 |
+
sentiment={dic["label"]: dic["score"] for dic in sentiment}
|
27 |
+
pipe2 = pipeline("text-classification", model = "hackathon-pln-es/twitter_sexismo-finetuned-robertuito-exist2021")
|
28 |
+
sexism_detection = pipe2(transcribed_text)
|
29 |
+
sexism_detection={dic["label"]: dic["score"] for dic in sexism_detection}
|
30 |
+
#sexism_detection = np.where(sexism_detection['label']== 0, 'No Sexista', 'Sexista')
|
31 |
+
pipe3 = pipeline("text-classification", model = "hackathon-pln-es/twitter_sexismo-finetuned-robertuito-exist2021")
|
32 |
+
harassment_detection = pipe3(transcribed_text)
|
33 |
+
harassment_detection={dic["label"]: dic["score"] for dic in harassment_detection}
|
34 |
+
#harassment_detection = np.where(harassment_detection['label']== 0, 'No Harassment', 'Harassment')
|
35 |
+
return sentiment
|
36 |
+
#sexism_detection, harassment_detection
|
37 |
+
|
38 |
+
gr.Interface(
|
39 |
+
predict_and_ctc_lm_decode,
|
40 |
+
inputs=[
|
41 |
+
gr.inputs.Audio(source="microphone", type="filepath", label="Record your audio")
|
42 |
+
],
|
43 |
+
#outputs=[gr.outputs.Label(num_top_classes=2),gr.outputs.Label(num_top_classes=2), gr.outputs.Label(num_top_classes=2)],
|
44 |
+
outputs=[gr.outputs.Label(num_top_classes=2)],
|
45 |
+
examples=[["respiracion_happiness.wav"]],
|
46 |
+
title="Sentiment Analysis of Spanish Transcribed Audio",
|
47 |
+
description="This is a Gradio demo for Sentiment Analysis of Transcribed Spanish Audio",
|
48 |
+
layout="horizontal",
|
49 |
+
theme="huggingface",
|
50 |
+
).launch(enable_queue=True, cache_examples=True)
|