Spaces:
Runtime error
Runtime error
File size: 14,812 Bytes
09e9630 c8bce00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
# This file is copied from https://github.com/rnwzd/FSPBT-Image-Translation/blob/master/original_models.py
# MIT License
# Copyright (c) 2022 Lorenzo Breschi
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import torch
import torch.nn as nn
from torch.autograd import Variable
from torch.nn import functional as F
import torchvision
from torchvision import models
import pytorch_lightning as pl
class LeakySoftplus(nn.Module):
def __init__(self,negative_slope: float = 0.01 ):
super().__init__()
self.negative_slope=negative_slope
def forward(self,input):
return F.softplus(input)+F.logsigmoid(input)*self.negative_slope
grelu = nn.LeakyReLU(0.2)
#grelu = nn.Softplus()
#grelu = LeakySoftplus(0.2)
#####
# Currently default generator we use
# conv0 -> conv1 -> conv2 -> resnet_blocks -> upconv2 -> upconv1 -> conv_11 -> (conv_11_a)* -> conv_12 -> (Tanh)*
# there are 2 conv layers inside conv_11_a
# * means is optional, model uses skip-connections
class Generator(pl.LightningModule):
def __init__(self, norm_layer='batch_norm', use_bias=False, resnet_blocks=7, tanh=True,
filters=[32, 64, 128, 128, 128, 64], input_channels=3, output_channels=3, append_smoothers=False):
super().__init__()
assert norm_layer in [None, 'batch_norm', 'instance_norm'], \
"norm_layer should be None, 'batch_norm' or 'instance_norm', not {}".format(
norm_layer)
self.norm_layer = None
if norm_layer == 'batch_norm':
self.norm_layer = nn.BatchNorm2d
elif norm_layer == 'instance_norm':
self.norm_layer = nn.InstanceNorm2d
# filters = [f//3 for f in filters]
self.use_bias = use_bias
self.resnet_blocks = resnet_blocks
self.append_smoothers = append_smoothers
stride1 = 2
stride2 = 2
self.conv0 = self.relu_layer(in_filters=input_channels, out_filters=filters[0],
kernel_size=7, stride=1, padding=3,
bias=self.use_bias,
norm_layer=self.norm_layer,
nonlinearity=grelu)
self.conv1 = self.relu_layer(in_filters=filters[0],
out_filters=filters[1],
kernel_size=3, stride=stride1, padding=1,
bias=self.use_bias,
norm_layer=self.norm_layer,
nonlinearity=grelu)
self.conv2 = self.relu_layer(in_filters=filters[1],
out_filters=filters[2],
kernel_size=3, stride=stride2, padding=1,
bias=self.use_bias,
norm_layer=self.norm_layer,
nonlinearity=grelu)
self.resnets = nn.ModuleList()
for i in range(self.resnet_blocks):
self.resnets.append(
self.resnet_block(in_filters=filters[2],
out_filters=filters[2],
kernel_size=3, stride=1, padding=1,
bias=self.use_bias,
norm_layer=self.norm_layer,
nonlinearity=grelu))
self.upconv2 = self.upconv_layer_upsample_and_conv(in_filters=filters[3] + filters[2],
# in_filters=filters[3], # disable skip-connections
out_filters=filters[4],
scale_factor=stride2,
kernel_size=3, stride=1, padding=1,
bias=self.use_bias,
norm_layer=self.norm_layer,
nonlinearity=grelu)
self.upconv1 = self.upconv_layer_upsample_and_conv(in_filters=filters[4] + filters[1],
# in_filters=filters[4], # disable skip-connections
out_filters=filters[4],
scale_factor=stride1,
kernel_size=3, stride=1, padding=1,
bias=self.use_bias,
norm_layer=self.norm_layer,
nonlinearity=grelu)
self.conv_11 = nn.Sequential(
nn.Conv2d(in_channels=filters[0] + filters[4] + input_channels,
# in_channels=filters[4], # disable skip-connections
out_channels=filters[5],
kernel_size=7, stride=1, padding=3, bias=self.use_bias, padding_mode='zeros'),
grelu
)
if self.append_smoothers:
self.conv_11_a = nn.Sequential(
nn.Conv2d(filters[5], filters[5], kernel_size=3,
bias=self.use_bias, padding=1, padding_mode='zeros'),
grelu,
# replace with variable
nn.BatchNorm2d(num_features=filters[5]),
nn.Conv2d(filters[5], filters[5], kernel_size=3,
bias=self.use_bias, padding=1, padding_mode='zeros'),
grelu
)
if tanh:
self.conv_12 = nn.Sequential(nn.Conv2d(filters[5], output_channels,
kernel_size=1, stride=1,
padding=0, bias=True, padding_mode='zeros'),
#torchvision.transforms.Grayscale(num_output_channels=3),
nn.Sigmoid())
else:
self.conv_12 = nn.Conv2d(filters[5], output_channels, kernel_size=1, stride=1,
padding=0, bias=True, padding_mode='zeros')
def log_tensors(self, logger, tag, img_tensor):
logger.experiment.add_images(tag, img_tensor)
def forward(self, input, logger=None, **kwargs):
# [1, 3, 534, 800]
output_d0 = self.conv0(input)
output_d1 = self.conv1(output_d0)
# comment to disable skip-connections
output_d2 = self.conv2(output_d1)
output = output_d2
for layer in self.resnets:
output = layer(output) + output
output_u2 = self.upconv2(torch.cat((output, output_d2), dim=1))
output_u1 = self.upconv1(torch.cat((output_u2, output_d1), dim=1))
output = torch.cat(
(output_u1, output_d0, input), dim=1)
output_11 = self.conv_11(output)
if self.append_smoothers:
output_11_a = self.conv_11_a(output_11)
else:
output_11_a = output_11
output_12 = self.conv_12(output_11_a)
output = output_12
return output
def relu_layer(self, in_filters, out_filters, kernel_size, stride, padding, bias,
norm_layer, nonlinearity):
out = nn.Sequential()
out.add_module('conv', nn.Conv2d(in_channels=in_filters,
out_channels=out_filters,
kernel_size=kernel_size, stride=stride,
padding=padding, bias=bias, padding_mode='zeros'))
if norm_layer:
out.add_module('normalization',
norm_layer(num_features=out_filters))
if nonlinearity:
out.add_module('nonlinearity', nonlinearity)
# out.add_module('dropout', nn.Dropout2d(0.25))
return out
def resnet_block(self, in_filters, out_filters, kernel_size, stride, padding, bias,
norm_layer, nonlinearity):
out = nn.Sequential()
if nonlinearity:
out.add_module('nonlinearity_0', nonlinearity)
out.add_module('conv_0', nn.Conv2d(in_channels=in_filters,
out_channels=out_filters,
kernel_size=kernel_size, stride=stride,
padding=padding, bias=bias, padding_mode='zeros'))
if norm_layer:
out.add_module('normalization',
norm_layer(num_features=out_filters))
if nonlinearity:
out.add_module('nonlinearity_1', nonlinearity)
out.add_module('conv_1', nn.Conv2d(in_channels=in_filters,
out_channels=out_filters,
kernel_size=kernel_size, stride=stride,
padding=padding, bias=bias, padding_mode='zeros'))
return out
def upconv_layer_upsample_and_conv(self, in_filters, out_filters, scale_factor, kernel_size, stride, padding, bias,
norm_layer, nonlinearity):
parts = [nn.Upsample(scale_factor=scale_factor),
nn.Conv2d(in_filters, out_filters, kernel_size,
stride, padding=padding, bias=False, padding_mode='zeros')
]
if norm_layer:
parts.append(norm_layer(num_features=out_filters))
if nonlinearity:
parts.append(nonlinearity)
return nn.Sequential(*parts)
relu = grelu
#####
# Default discriminator
#####
relu = nn.LeakyReLU(0.2)
class Discriminator(nn.Module):
def __init__(self, num_filters=12, input_channels=3, n_layers=2,
norm_layer='instance_norm', use_bias=True):
super().__init__()
self.num_filters = num_filters
self.input_channels = input_channels
self.use_bias = use_bias
if norm_layer == 'batch_norm':
self.norm_layer = nn.BatchNorm2d
else:
self.norm_layer = nn.InstanceNorm2d
self.net = self.make_net(
n_layers, self.input_channels, 1, 4, 2, self.use_bias)
def make_net(self, n, flt_in, flt_out=1, k=4, stride=2, bias=True):
padding = 1
model = nn.Sequential()
model.add_module('conv0', self.make_block(
flt_in, self.num_filters, k, stride, padding, bias, None, relu))
flt_mult, flt_mult_prev = 1, 1
# n - 1 blocks
for l in range(1, n):
flt_mult_prev = flt_mult
flt_mult = min(2**(l), 8)
model.add_module('conv_%d' % (l), self.make_block(self.num_filters * flt_mult_prev, self.num_filters * flt_mult,
k, stride, padding, bias, self.norm_layer, relu))
flt_mult_prev = flt_mult
flt_mult = min(2**n, 8)
model.add_module('conv_%d' % (n), self.make_block(self.num_filters * flt_mult_prev, self.num_filters * flt_mult,
k, 1, padding, bias, self.norm_layer, relu))
model.add_module('conv_out', self.make_block(
self.num_filters * flt_mult, 1, k, 1, padding, bias, None, None))
return model
def make_block(self, flt_in, flt_out, k, stride, padding, bias, norm, relu):
m = nn.Sequential()
m.add_module('conv', nn.Conv2d(flt_in, flt_out, k,
stride=stride, padding=padding, bias=bias, padding_mode='zeros'))
if norm is not None:
m.add_module('norm', norm(flt_out))
if relu is not None:
m.add_module('relu', relu)
return m
def forward(self, x):
output = self.net(x)
# output = output.mean((2, 3), True)
# output = output.squeeze(-1).squeeze(-1)
# output = output.mean(dim=(-1,-2))
return output
#####
# Perception VGG19 loss
#####
class PerceptualVGG19(nn.Module):
def __init__(self, feature_layers=[0, 3, 5], use_normalization=False):
super().__init__()
# model = models.vgg19(pretrained=True)
model = models.squeezenet1_1(pretrained=True)
model.float()
model.eval()
self.model = model
self.feature_layers = feature_layers
self.mean = torch.FloatTensor([0.485, 0.456, 0.406])
self.mean_tensor = None
self.std = torch.FloatTensor([0.229, 0.224, 0.225])
self.std_tensor = None
self.use_normalization = use_normalization
for param in self.parameters():
param.requires_grad = False
def normalize(self, x):
if not self.use_normalization:
return x
if self.mean_tensor is None:
self.mean_tensor = Variable(
self.mean.view(1, 3, 1, 1).expand(x.shape),
requires_grad=False)
self.std_tensor = Variable(
self.std.view(1, 3, 1, 1).expand(x.shape), requires_grad=False)
x = (x + 1) / 2
return (x - self.mean_tensor) / self.std_tensor
def run(self, x):
features = []
h = x
for f in range(max(self.feature_layers) + 1):
h = self.model.features[f](h)
if f in self.feature_layers:
not_normed_features = h.clone().view(h.size(0), -1)
features.append(not_normed_features)
return torch.cat(features, dim=1)
def forward(self, x):
h = self.normalize(x)
return self.run(h)
|