Spaces:
Running
Running
Add files
Browse files- .gitmodules +3 -0
- DualStyleGAN +1 -0
- app.py +253 -0
- packages.txt +2 -0
- requirements.txt +7 -0
.gitmodules
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
[submodule "DualStyleGAN"]
|
2 |
+
path = DualStyleGAN
|
3 |
+
url = https://github.com/williamyang1991/DualStyleGAN
|
DualStyleGAN
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Subproject commit d9c52c2313913352cd2e35707f72fd450bf16630
|
app.py
ADDED
@@ -0,0 +1,253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
import argparse
|
6 |
+
import functools
|
7 |
+
import os
|
8 |
+
import pathlib
|
9 |
+
import sys
|
10 |
+
import tarfile
|
11 |
+
from typing import Callable
|
12 |
+
|
13 |
+
if os.environ['SYSTEM'] == 'spaces':
|
14 |
+
os.system("sed -i '10,17d' DualStyleGAN/model/stylegan/op/fused_act.py")
|
15 |
+
os.system("sed -i '10,17d' DualStyleGAN/model/stylegan/op/upfirdn2d.py")
|
16 |
+
|
17 |
+
sys.path.insert(0, 'DualStyleGAN')
|
18 |
+
|
19 |
+
import dlib
|
20 |
+
import gradio as gr
|
21 |
+
import huggingface_hub
|
22 |
+
import numpy as np
|
23 |
+
import PIL.Image
|
24 |
+
import torch
|
25 |
+
import torch.nn as nn
|
26 |
+
import torchvision.transforms as T
|
27 |
+
from model.dualstylegan import DualStyleGAN
|
28 |
+
from model.encoder.align_all_parallel import align_face
|
29 |
+
from model.encoder.psp import pSp
|
30 |
+
from util import load_image, visualize
|
31 |
+
|
32 |
+
TOKEN = os.environ['TOKEN']
|
33 |
+
|
34 |
+
MODEL_REPO = 'hysts/DualStyleGAN'
|
35 |
+
|
36 |
+
|
37 |
+
def parse_args() -> argparse.Namespace:
|
38 |
+
parser = argparse.ArgumentParser()
|
39 |
+
parser.add_argument('--device', type=str, default='cpu')
|
40 |
+
parser.add_argument('--theme', type=str)
|
41 |
+
parser.add_argument('--live', action='store_true')
|
42 |
+
parser.add_argument('--share', action='store_true')
|
43 |
+
parser.add_argument('--port', type=int)
|
44 |
+
parser.add_argument('--disable-queue',
|
45 |
+
dest='enable_queue',
|
46 |
+
action='store_false')
|
47 |
+
parser.add_argument('--allow-flagging', type=str, default='never')
|
48 |
+
parser.add_argument('--allow-screenshot', action='store_true')
|
49 |
+
return parser.parse_args()
|
50 |
+
|
51 |
+
|
52 |
+
def download_cartoon_images() -> None:
|
53 |
+
image_dir = pathlib.Path('cartoon')
|
54 |
+
if not image_dir.exists():
|
55 |
+
path = huggingface_hub.hf_hub_download('hysts/DualStyleGAN-Cartoon',
|
56 |
+
'cartoon.tar.gz',
|
57 |
+
repo_type='dataset',
|
58 |
+
use_auth_token=TOKEN)
|
59 |
+
with tarfile.open(path) as f:
|
60 |
+
f.extractall()
|
61 |
+
|
62 |
+
|
63 |
+
def load_encoder(device: torch.device) -> nn.Module:
|
64 |
+
ckpt_path = huggingface_hub.hf_hub_download(MODEL_REPO,
|
65 |
+
'models/encoder.pt',
|
66 |
+
use_auth_token=TOKEN)
|
67 |
+
ckpt = torch.load(ckpt_path, map_location='cpu')
|
68 |
+
opts = ckpt['opts']
|
69 |
+
opts['device'] = 'cpu'
|
70 |
+
opts['checkpoint_path'] = ckpt_path
|
71 |
+
opts = argparse.Namespace(**opts)
|
72 |
+
model = pSp(opts)
|
73 |
+
model.to(device)
|
74 |
+
model.eval()
|
75 |
+
return model
|
76 |
+
|
77 |
+
|
78 |
+
def load_generator(style_type: str, device: torch.device) -> nn.Module:
|
79 |
+
model = DualStyleGAN(1024, 512, 8, 2, res_index=6)
|
80 |
+
ckpt_path = huggingface_hub.hf_hub_download(
|
81 |
+
MODEL_REPO, f'models/{style_type}/generator.pt', use_auth_token=TOKEN)
|
82 |
+
ckpt = torch.load(ckpt_path, map_location='cpu')
|
83 |
+
model.load_state_dict(ckpt['g_ema'])
|
84 |
+
model.to(device)
|
85 |
+
model.eval()
|
86 |
+
return model
|
87 |
+
|
88 |
+
|
89 |
+
def load_exstylecode(style_type: str) -> dict[str, np.ndarray]:
|
90 |
+
if style_type in ['cartoon', 'caricature', 'anime']:
|
91 |
+
filename = 'refined_exstyle_code.npy'
|
92 |
+
else:
|
93 |
+
filename = 'exstyle_code.npy'
|
94 |
+
path = huggingface_hub.hf_hub_download(MODEL_REPO,
|
95 |
+
f'models/{style_type}/{filename}',
|
96 |
+
use_auth_token=TOKEN)
|
97 |
+
exstyles = np.load(path, allow_pickle=True).item()
|
98 |
+
return exstyles
|
99 |
+
|
100 |
+
|
101 |
+
def create_transform() -> Callable:
|
102 |
+
transform = T.Compose([
|
103 |
+
T.Resize(256),
|
104 |
+
T.CenterCrop(256),
|
105 |
+
T.ToTensor(),
|
106 |
+
T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
|
107 |
+
])
|
108 |
+
return transform
|
109 |
+
|
110 |
+
|
111 |
+
def create_dlib_landmark_model():
|
112 |
+
path = huggingface_hub.hf_hub_download(
|
113 |
+
'hysts/dlib_face_landmark_model',
|
114 |
+
'shape_predictor_68_face_landmarks.dat',
|
115 |
+
use_auth_token=TOKEN)
|
116 |
+
return dlib.shape_predictor(path)
|
117 |
+
|
118 |
+
|
119 |
+
def denormalize(tensor: torch.Tensor) -> torch.Tensor:
|
120 |
+
return torch.clamp((tensor + 1) / 2 * 255, 0, 255).to(torch.uint8)
|
121 |
+
|
122 |
+
|
123 |
+
def postprocess(tensor: torch.Tensor) -> PIL.Image.Image:
|
124 |
+
tensor = denormalize(tensor)
|
125 |
+
image = tensor.cpu().numpy().transpose(1, 2, 0)
|
126 |
+
return PIL.Image.fromarray(image)
|
127 |
+
|
128 |
+
|
129 |
+
@torch.inference_mode()
|
130 |
+
def run(
|
131 |
+
image,
|
132 |
+
style_id: int,
|
133 |
+
dlib_landmark_model,
|
134 |
+
encoder: nn.Module,
|
135 |
+
generator: nn.Module,
|
136 |
+
exstyles: dict[str, np.ndarray],
|
137 |
+
transform: Callable,
|
138 |
+
device: torch.device,
|
139 |
+
style_image_dir: pathlib.Path,
|
140 |
+
) -> tuple[PIL.Image.Image, PIL.Image.Image, PIL.Image.Image, PIL.Image.Image]:
|
141 |
+
stylename = list(exstyles.keys())[style_id]
|
142 |
+
|
143 |
+
image = align_face(filepath=image.name, predictor=dlib_landmark_model)
|
144 |
+
input_data = transform(image).unsqueeze(0).to(device)
|
145 |
+
|
146 |
+
img_rec, instyle = encoder(input_data,
|
147 |
+
randomize_noise=False,
|
148 |
+
return_latents=True,
|
149 |
+
z_plus_latent=True,
|
150 |
+
return_z_plus_latent=True,
|
151 |
+
resize=False)
|
152 |
+
img_rec = torch.clamp(img_rec.detach(), -1, 1)
|
153 |
+
|
154 |
+
latent = torch.tensor(exstyles[stylename]).repeat(2, 1, 1)
|
155 |
+
# latent[0] for both color and structrue transfer and latent[1] for only structrue transfer
|
156 |
+
latent[1, 7:18] = instyle[0, 7:18]
|
157 |
+
exstyle = generator.generator.style(
|
158 |
+
latent.reshape(latent.shape[0] * latent.shape[1],
|
159 |
+
latent.shape[2])).reshape(latent.shape)
|
160 |
+
|
161 |
+
img_gen, _ = generator([instyle.repeat(2, 1, 1)],
|
162 |
+
exstyle,
|
163 |
+
z_plus_latent=True,
|
164 |
+
truncation=0.7,
|
165 |
+
truncation_latent=0,
|
166 |
+
use_res=True,
|
167 |
+
interp_weights=[0.6] * 7 + [1] * 11)
|
168 |
+
img_gen = torch.clamp(img_gen.detach(), -1, 1)
|
169 |
+
# deactivate color-related layers by setting w_c = 0
|
170 |
+
img_gen2, _ = generator([instyle],
|
171 |
+
exstyle[0:1],
|
172 |
+
z_plus_latent=True,
|
173 |
+
truncation=0.7,
|
174 |
+
truncation_latent=0,
|
175 |
+
use_res=True,
|
176 |
+
interp_weights=[0.6] * 7 + [0] * 11)
|
177 |
+
img_gen2 = torch.clamp(img_gen2.detach(), -1, 1)
|
178 |
+
|
179 |
+
img_rec = postprocess(img_rec[0])
|
180 |
+
img_gen0 = postprocess(img_gen[0])
|
181 |
+
img_gen1 = postprocess(img_gen[1])
|
182 |
+
img_gen2 = postprocess(img_gen2[0])
|
183 |
+
|
184 |
+
style_image = PIL.Image.open(style_image_dir / stylename)
|
185 |
+
|
186 |
+
return image, style_image, img_rec, img_gen0, img_gen1, img_gen2
|
187 |
+
|
188 |
+
|
189 |
+
def main():
|
190 |
+
gr.close_all()
|
191 |
+
|
192 |
+
args = parse_args()
|
193 |
+
device = torch.device(args.device)
|
194 |
+
|
195 |
+
style_type = 'cartoon'
|
196 |
+
style_image_dir = pathlib.Path(style_type)
|
197 |
+
|
198 |
+
download_cartoon_images()
|
199 |
+
dlib_landmark_model = create_dlib_landmark_model()
|
200 |
+
encoder = load_encoder(device)
|
201 |
+
generator = load_generator(style_type, device)
|
202 |
+
exstyles = load_exstylecode(style_type)
|
203 |
+
transform = create_transform()
|
204 |
+
|
205 |
+
func = functools.partial(run,
|
206 |
+
dlib_landmark_model=dlib_landmark_model,
|
207 |
+
encoder=encoder,
|
208 |
+
generator=generator,
|
209 |
+
exstyles=exstyles,
|
210 |
+
transform=transform,
|
211 |
+
device=device,
|
212 |
+
style_image_dir=style_image_dir)
|
213 |
+
func = functools.update_wrapper(func, run)
|
214 |
+
|
215 |
+
repo_url = 'https://github.com/williamyang1991/DualStyleGAN'
|
216 |
+
title = 'williamyang1991/DualStyleGAN'
|
217 |
+
description = f'A demo for {repo_url}'
|
218 |
+
article = None
|
219 |
+
|
220 |
+
image_paths = sorted(pathlib.Path('images').glob('*'))
|
221 |
+
examples = [[path.as_posix(), 26] for path in image_paths]
|
222 |
+
|
223 |
+
gr.Interface(
|
224 |
+
func,
|
225 |
+
[
|
226 |
+
gr.inputs.Image(type='file', label='Image'),
|
227 |
+
gr.inputs.Slider(0, 316, step=1, default=26, label='Style'),
|
228 |
+
],
|
229 |
+
[
|
230 |
+
gr.outputs.Image(type='pil', label='Aligned face'),
|
231 |
+
gr.outputs.Image(type='pil', label='Style'),
|
232 |
+
gr.outputs.Image(type='pil', label='Reconstructed'),
|
233 |
+
gr.outputs.Image(type='pil', label='Gen 1'),
|
234 |
+
gr.outputs.Image(type='pil', label='Gen 2'),
|
235 |
+
gr.outputs.Image(type='pil', label='Gen 3'),
|
236 |
+
],
|
237 |
+
examples=examples,
|
238 |
+
theme=args.theme,
|
239 |
+
title=title,
|
240 |
+
description=description,
|
241 |
+
article=article,
|
242 |
+
allow_screenshot=args.allow_screenshot,
|
243 |
+
allow_flagging=args.allow_flagging,
|
244 |
+
live=args.live,
|
245 |
+
).launch(
|
246 |
+
enable_queue=args.enable_queue,
|
247 |
+
server_port=args.port,
|
248 |
+
share=args.share,
|
249 |
+
)
|
250 |
+
|
251 |
+
|
252 |
+
if __name__ == '__main__':
|
253 |
+
main()
|
packages.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
cmake
|
2 |
+
ninja-build
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
dlib==19.23.0
|
2 |
+
numpy==1.22.3
|
3 |
+
opencv-python-headless==4.5.5.62
|
4 |
+
Pillow==9.0.1
|
5 |
+
scipy==1.8.0
|
6 |
+
torch==1.11.0
|
7 |
+
torchvision==0.12.0
|