Spaces:
Runtime error
Runtime error
File size: 9,730 Bytes
28958dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
/******************************************************************************
* Copyright (c) 2011, Duane Merrill. All rights reserved.
* Copyright (c) 2011-2018, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************/
/**
* \file
* cub::BlockReduceWarpReductions provides variants of warp-reduction-based parallel reduction across a CUDA thread block. Supports non-commutative reduction operators.
*/
#pragma once
#include "../../warp/warp_reduce.cuh"
#include "../../config.cuh"
#include "../../util_ptx.cuh"
/// Optional outer namespace(s)
CUB_NS_PREFIX
/// CUB namespace
namespace cub {
/**
* \brief BlockReduceWarpReductions provides variants of warp-reduction-based parallel reduction across a CUDA thread block. Supports non-commutative reduction operators.
*/
template <
typename T, ///< Data type being reduced
int BLOCK_DIM_X, ///< The thread block length in threads along the X dimension
int BLOCK_DIM_Y, ///< The thread block length in threads along the Y dimension
int BLOCK_DIM_Z, ///< The thread block length in threads along the Z dimension
int PTX_ARCH> ///< The PTX compute capability for which to to specialize this collective
struct BlockReduceWarpReductions
{
/// Constants
enum
{
/// The thread block size in threads
BLOCK_THREADS = BLOCK_DIM_X * BLOCK_DIM_Y * BLOCK_DIM_Z,
/// Number of warp threads
WARP_THREADS = CUB_WARP_THREADS(PTX_ARCH),
/// Number of active warps
WARPS = (BLOCK_THREADS + WARP_THREADS - 1) / WARP_THREADS,
/// The logical warp size for warp reductions
LOGICAL_WARP_SIZE = CUB_MIN(BLOCK_THREADS, WARP_THREADS),
/// Whether or not the logical warp size evenly divides the thread block size
EVEN_WARP_MULTIPLE = (BLOCK_THREADS % LOGICAL_WARP_SIZE == 0)
};
/// WarpReduce utility type
typedef typename WarpReduce<T, LOGICAL_WARP_SIZE, PTX_ARCH>::InternalWarpReduce WarpReduce;
/// Shared memory storage layout type
struct _TempStorage
{
typename WarpReduce::TempStorage warp_reduce[WARPS]; ///< Buffer for warp-synchronous scan
T warp_aggregates[WARPS]; ///< Shared totals from each warp-synchronous scan
T block_prefix; ///< Shared prefix for the entire thread block
};
/// Alias wrapper allowing storage to be unioned
struct TempStorage : Uninitialized<_TempStorage> {};
// Thread fields
_TempStorage &temp_storage;
int linear_tid;
int warp_id;
int lane_id;
/// Constructor
__device__ __forceinline__ BlockReduceWarpReductions(
TempStorage &temp_storage)
:
temp_storage(temp_storage.Alias()),
linear_tid(RowMajorTid(BLOCK_DIM_X, BLOCK_DIM_Y, BLOCK_DIM_Z)),
warp_id((WARPS == 1) ? 0 : linear_tid / WARP_THREADS),
lane_id(LaneId())
{}
template <bool FULL_TILE, typename ReductionOp, int SUCCESSOR_WARP>
__device__ __forceinline__ T ApplyWarpAggregates(
ReductionOp reduction_op, ///< [in] Binary scan operator
T warp_aggregate, ///< [in] <b>[<em>lane</em><sub>0</sub> only]</b> Warp-wide aggregate reduction of input items
int num_valid, ///< [in] Number of valid elements (may be less than BLOCK_THREADS)
Int2Type<SUCCESSOR_WARP> /*successor_warp*/)
{
if (FULL_TILE || (SUCCESSOR_WARP * LOGICAL_WARP_SIZE < num_valid))
{
T addend = temp_storage.warp_aggregates[SUCCESSOR_WARP];
warp_aggregate = reduction_op(warp_aggregate, addend);
}
return ApplyWarpAggregates<FULL_TILE>(reduction_op, warp_aggregate, num_valid, Int2Type<SUCCESSOR_WARP + 1>());
}
template <bool FULL_TILE, typename ReductionOp>
__device__ __forceinline__ T ApplyWarpAggregates(
ReductionOp /*reduction_op*/, ///< [in] Binary scan operator
T warp_aggregate, ///< [in] <b>[<em>lane</em><sub>0</sub> only]</b> Warp-wide aggregate reduction of input items
int /*num_valid*/, ///< [in] Number of valid elements (may be less than BLOCK_THREADS)
Int2Type<WARPS> /*successor_warp*/)
{
return warp_aggregate;
}
/// Returns block-wide aggregate in <em>thread</em><sub>0</sub>.
template <
bool FULL_TILE,
typename ReductionOp>
__device__ __forceinline__ T ApplyWarpAggregates(
ReductionOp reduction_op, ///< [in] Binary scan operator
T warp_aggregate, ///< [in] <b>[<em>lane</em><sub>0</sub> only]</b> Warp-wide aggregate reduction of input items
int num_valid) ///< [in] Number of valid elements (may be less than BLOCK_THREADS)
{
// Share lane aggregates
if (lane_id == 0)
{
temp_storage.warp_aggregates[warp_id] = warp_aggregate;
}
CTA_SYNC();
// Update total aggregate in warp 0, lane 0
if (linear_tid == 0)
{
warp_aggregate = ApplyWarpAggregates<FULL_TILE>(reduction_op, warp_aggregate, num_valid, Int2Type<1>());
}
return warp_aggregate;
}
/// Computes a thread block-wide reduction using addition (+) as the reduction operator. The first num_valid threads each contribute one reduction partial. The return value is only valid for thread<sub>0</sub>.
template <bool FULL_TILE>
__device__ __forceinline__ T Sum(
T input, ///< [in] Calling thread's input partial reductions
int num_valid) ///< [in] Number of valid elements (may be less than BLOCK_THREADS)
{
cub::Sum reduction_op;
int warp_offset = (warp_id * LOGICAL_WARP_SIZE);
int warp_num_valid = ((FULL_TILE && EVEN_WARP_MULTIPLE) || (warp_offset + LOGICAL_WARP_SIZE <= num_valid)) ?
LOGICAL_WARP_SIZE :
num_valid - warp_offset;
// Warp reduction in every warp
T warp_aggregate = WarpReduce(temp_storage.warp_reduce[warp_id]).template Reduce<(FULL_TILE && EVEN_WARP_MULTIPLE)>(
input,
warp_num_valid,
cub::Sum());
// Update outputs and block_aggregate with warp-wide aggregates from lane-0s
return ApplyWarpAggregates<FULL_TILE>(reduction_op, warp_aggregate, num_valid);
}
/// Computes a thread block-wide reduction using the specified reduction operator. The first num_valid threads each contribute one reduction partial. The return value is only valid for thread<sub>0</sub>.
template <
bool FULL_TILE,
typename ReductionOp>
__device__ __forceinline__ T Reduce(
T input, ///< [in] Calling thread's input partial reductions
int num_valid, ///< [in] Number of valid elements (may be less than BLOCK_THREADS)
ReductionOp reduction_op) ///< [in] Binary reduction operator
{
int warp_offset = warp_id * LOGICAL_WARP_SIZE;
int warp_num_valid = ((FULL_TILE && EVEN_WARP_MULTIPLE) || (warp_offset + LOGICAL_WARP_SIZE <= num_valid)) ?
LOGICAL_WARP_SIZE :
num_valid - warp_offset;
// Warp reduction in every warp
T warp_aggregate = WarpReduce(temp_storage.warp_reduce[warp_id]).template Reduce<(FULL_TILE && EVEN_WARP_MULTIPLE)>(
input,
warp_num_valid,
reduction_op);
// Update outputs and block_aggregate with warp-wide aggregates from lane-0s
return ApplyWarpAggregates<FULL_TILE>(reduction_op, warp_aggregate, num_valid);
}
};
} // CUB namespace
CUB_NS_POSTFIX // Optional outer namespace(s)
|