LIVE / thrust /examples /discrete_voronoi.cu
Xu Ma
upload all files
28958dc
raw
history blame
6.53 kB
#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <thrust/tuple.h>
#include <thrust/extrema.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/random.h>
#include <iostream>
#include <iomanip>
#include <fstream>
#include <cmath>
#include "include/timer.h"
// Compute an approximate Voronoi Diagram with a Jump Flooding Algorithm (JFA)
//
// References
// http://en.wikipedia.org/wiki/Voronoi_diagram
// http://www.comp.nus.edu.sg/~tants/jfa.html
// http://www.utdallas.edu/~guodongrong/Papers/Dissertation.pdf
//
// Thanks to David Coeurjolly for contributing this example
// minFunctor
// Tuple = <seeds,seeds + k,seeds + m*k, seeds - k,
// seeds - m*k, seeds+ k+m*k,seeds + k-m*k,
// seeds- k+m*k,seeds - k+m*k, i>
struct minFunctor
{
int m, n, k;
__host__ __device__
minFunctor(int m, int n, int k)
: m(m), n(n), k(k) {}
//To decide I have to change my current Voronoi site
__host__ __device__
int minVoro(int x_i, int y_i, int p, int q)
{
if (q == m*n)
return p;
// coordinates of points p and q
int y_q = q / m;
int x_q = q - y_q * m;
int y_p = p / m;
int x_p = p - y_p * m;
// squared distances
int d_iq = (x_i-x_q) * (x_i-x_q) + (y_i-y_q) * (y_i-y_q);
int d_ip = (x_i-x_p) * (x_i-x_p) + (y_i-y_p) * (y_i-y_p);
if (d_iq < d_ip)
return q; // q is closer
else
return p;
}
//For each point p+{-k,0,k}, we keep the Site with minimum distance
template <typename Tuple>
__host__ __device__
int operator()(const Tuple &t)
{
//Current point and site
int i = thrust::get<9>(t);
int v = thrust::get<0>(t);
//Current point coordinates
int y = i / m;
int x = i - y * m;
if (x >= k)
{
v = minVoro(x, y, v, thrust::get<3>(t));
if (y >= k)
v = minVoro(x, y, v, thrust::get<8>(t));
if (y + k < n)
v = minVoro(x, y, v, thrust::get<7>(t));
}
if (x + k < m)
{
v = minVoro(x, y, v, thrust::get<1>(t));
if (y >= k)
v = minVoro(x, y, v, thrust::get<6>(t));
if (y + k < n)
v = minVoro(x, y, v, thrust::get<5>(t));
}
if (y >= k)
v = minVoro(x, y, v, thrust::get<4>(t));
if (y + k < n)
v = minVoro(x, y, v, thrust::get<2>(t));
//global return
return v;
}
};
// print an M-by-N array
template <typename T>
void print(int m, int n, const thrust::device_vector<T>& d_data)
{
thrust::host_vector<T> h_data = d_data;
for(int i = 0; i < m; i++)
{
for(int j = 0; j < n; j++)
std::cout << std::setw(4) << h_data[i * n + j] << " ";
std::cout << "\n";
}
}
void generate_random_sites(thrust::host_vector<int> &t, int Nb, int m, int n)
{
thrust::default_random_engine rng;
thrust::uniform_int_distribution<int> dist(0, m * n - 1);
for(int k = 0; k < Nb; k++)
{
int index = dist(rng);
t[index] = index + 1;
}
}
//Export the tab to PGM image format
void vector_to_pgm(thrust::host_vector<int> &t, int m, int n, const char *out)
{
assert(static_cast<int>(t.size()) == m * n &&
"Vector size does not match image dims.");
std::fstream f(out, std::fstream::out);
f << "P2\n";
f << m << " " << n << "\n";
f << "253\n";
//Hash function to map values to [0,255]
auto to_grey_level = [](int in_value) -> int
{
return (71 * in_value) % 253;
};
for (int value : t)
{
f << to_grey_level(value) << " ";
}
f << "\n";
f.close();
}
/************Main Jfa loop********************/
// Perform a jump with step k
void jfa(thrust::device_vector<int>& in,thrust::device_vector<int>& out, unsigned int k, int m, int n)
{
thrust::transform(
thrust::make_zip_iterator(
thrust::make_tuple(in.begin(),
in.begin() + k,
in.begin() + m*k,
in.begin() - k,
in.begin() - m*k,
in.begin() + k+m*k,
in.begin() + k-m*k,
in.begin() - k+m*k,
in.begin() - k-m*k,
thrust::counting_iterator<int>(0))),
thrust::make_zip_iterator(
thrust::make_tuple(in.begin(),
in.begin() + k,
in.begin() + m*k,
in.begin() - k,
in.begin() - m*k,
in.begin() + k+m*k,
in.begin() + k-m*k,
in.begin() - k+m*k,
in.begin() - k-m*k,
thrust::counting_iterator<int>(0)))+ n*m,
out.begin(),
minFunctor(m,n,k));
}
/********************************************/
void display_time(timer& t)
{
std::cout << " ( "<< 1e3 * t.elapsed() << "ms )" << std::endl;
}
int main(void)
{
int m = 2048; // number of rows
int n = 2048; // number of columns
int s = 1000; // number of sites
timer t;
//Host vector to encode a 2D image
std::cout << "[Inititialize " << m << "x" << n << " Image]" << std::endl;
t.restart();
thrust::host_vector<int> seeds_host(m*n, m*n);
generate_random_sites(seeds_host,s,m,n);
display_time(t);
std::cout<<"[Copy to Device]" << std::endl;
t.restart();
thrust::device_vector<int> seeds = seeds_host;
thrust::device_vector<int> temp(seeds);
display_time(t);
//JFA+1 : before entering the log(n) loop, we perform a jump with k=1
std::cout<<"[JFA stepping]" << std::endl;
t.restart();
jfa(seeds,temp,1,m,n);
seeds.swap(temp);
//JFA : main loop with k=n/2, n/4, ..., 1
for(int k = thrust::max(m,n) / 2; k > 0; k /= 2)
{
jfa(seeds,temp,k,m,n);
seeds.swap(temp);
}
display_time(t);
std::cout <<" ( " << seeds.size() / (1e6 * t.elapsed()) << " MPixel/s ) " << std::endl;
std::cout << "[Device to Host Copy]" << std::endl;
t.restart();
seeds_host = seeds;
display_time(t);
std::cout << "[PGM Export]" << std::endl;
t.restart();
vector_to_pgm(seeds_host, m, n, "discrete_voronoi.pgm");
display_time(t);
return 0;
}