LIVE / thrust /cub /block /specializations /block_scan_raking.cuh
Xu Ma
upload all files
28958dc
raw
history blame
28.4 kB
/******************************************************************************
* Copyright (c) 2011, Duane Merrill. All rights reserved.
* Copyright (c) 2011-2018, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************/
/**
* \file
* cub::BlockScanRaking provides variants of raking-based parallel prefix scan across a CUDA thread block.
*/
#pragma once
#include "../../config.cuh"
#include "../../util_ptx.cuh"
#include "../../block/block_raking_layout.cuh"
#include "../../thread/thread_reduce.cuh"
#include "../../thread/thread_scan.cuh"
#include "../../warp/warp_scan.cuh"
/// Optional outer namespace(s)
CUB_NS_PREFIX
/// CUB namespace
namespace cub {
/**
* \brief BlockScanRaking provides variants of raking-based parallel prefix scan across a CUDA thread block.
*/
template <
typename T, ///< Data type being scanned
int BLOCK_DIM_X, ///< The thread block length in threads along the X dimension
int BLOCK_DIM_Y, ///< The thread block length in threads along the Y dimension
int BLOCK_DIM_Z, ///< The thread block length in threads along the Z dimension
bool MEMOIZE, ///< Whether or not to buffer outer raking scan partials to incur fewer shared memory reads at the expense of higher register pressure
int PTX_ARCH> ///< The PTX compute capability for which to to specialize this collective
struct BlockScanRaking
{
//---------------------------------------------------------------------
// Types and constants
//---------------------------------------------------------------------
/// Constants
enum
{
/// The thread block size in threads
BLOCK_THREADS = BLOCK_DIM_X * BLOCK_DIM_Y * BLOCK_DIM_Z,
};
/// Layout type for padded thread block raking grid
typedef BlockRakingLayout<T, BLOCK_THREADS, PTX_ARCH> BlockRakingLayout;
/// Constants
enum
{
/// Number of raking threads
RAKING_THREADS = BlockRakingLayout::RAKING_THREADS,
/// Number of raking elements per warp synchronous raking thread
SEGMENT_LENGTH = BlockRakingLayout::SEGMENT_LENGTH,
/// Cooperative work can be entirely warp synchronous
WARP_SYNCHRONOUS = (BLOCK_THREADS == RAKING_THREADS),
};
/// WarpScan utility type
typedef WarpScan<T, RAKING_THREADS, PTX_ARCH> WarpScan;
/// Shared memory storage layout type
struct _TempStorage
{
typename WarpScan::TempStorage warp_scan; ///< Buffer for warp-synchronous scan
typename BlockRakingLayout::TempStorage raking_grid; ///< Padded thread block raking grid
T block_aggregate; ///< Block aggregate
};
/// Alias wrapper allowing storage to be unioned
struct TempStorage : Uninitialized<_TempStorage> {};
//---------------------------------------------------------------------
// Per-thread fields
//---------------------------------------------------------------------
// Thread fields
_TempStorage &temp_storage;
unsigned int linear_tid;
T cached_segment[SEGMENT_LENGTH];
//---------------------------------------------------------------------
// Utility methods
//---------------------------------------------------------------------
/// Templated reduction
template <int ITERATION, typename ScanOp>
__device__ __forceinline__ T GuardedReduce(
T* raking_ptr, ///< [in] Input array
ScanOp scan_op, ///< [in] Binary reduction operator
T raking_partial, ///< [in] Prefix to seed reduction with
Int2Type<ITERATION> /*iteration*/)
{
if ((BlockRakingLayout::UNGUARDED) || (((linear_tid * SEGMENT_LENGTH) + ITERATION) < BLOCK_THREADS))
{
T addend = raking_ptr[ITERATION];
raking_partial = scan_op(raking_partial, addend);
}
return GuardedReduce(raking_ptr, scan_op, raking_partial, Int2Type<ITERATION + 1>());
}
/// Templated reduction (base case)
template <typename ScanOp>
__device__ __forceinline__ T GuardedReduce(
T* /*raking_ptr*/, ///< [in] Input array
ScanOp /*scan_op*/, ///< [in] Binary reduction operator
T raking_partial, ///< [in] Prefix to seed reduction with
Int2Type<SEGMENT_LENGTH> /*iteration*/)
{
return raking_partial;
}
/// Templated copy
template <int ITERATION>
__device__ __forceinline__ void CopySegment(
T* out, ///< [out] Out array
T* in, ///< [in] Input array
Int2Type<ITERATION> /*iteration*/)
{
out[ITERATION] = in[ITERATION];
CopySegment(out, in, Int2Type<ITERATION + 1>());
}
/// Templated copy (base case)
__device__ __forceinline__ void CopySegment(
T* /*out*/, ///< [out] Out array
T* /*in*/, ///< [in] Input array
Int2Type<SEGMENT_LENGTH> /*iteration*/)
{}
/// Performs upsweep raking reduction, returning the aggregate
template <typename ScanOp>
__device__ __forceinline__ T Upsweep(
ScanOp scan_op)
{
T *smem_raking_ptr = BlockRakingLayout::RakingPtr(temp_storage.raking_grid, linear_tid);
// Read data into registers
CopySegment(cached_segment, smem_raking_ptr, Int2Type<0>());
T raking_partial = cached_segment[0];
return GuardedReduce(cached_segment, scan_op, raking_partial, Int2Type<1>());
}
/// Performs exclusive downsweep raking scan
template <typename ScanOp>
__device__ __forceinline__ void ExclusiveDownsweep(
ScanOp scan_op,
T raking_partial,
bool apply_prefix = true)
{
T *smem_raking_ptr = BlockRakingLayout::RakingPtr(temp_storage.raking_grid, linear_tid);
// Read data back into registers
if (!MEMOIZE)
{
CopySegment(cached_segment, smem_raking_ptr, Int2Type<0>());
}
internal::ThreadScanExclusive(cached_segment, cached_segment, scan_op, raking_partial, apply_prefix);
// Write data back to smem
CopySegment(smem_raking_ptr, cached_segment, Int2Type<0>());
}
/// Performs inclusive downsweep raking scan
template <typename ScanOp>
__device__ __forceinline__ void InclusiveDownsweep(
ScanOp scan_op,
T raking_partial,
bool apply_prefix = true)
{
T *smem_raking_ptr = BlockRakingLayout::RakingPtr(temp_storage.raking_grid, linear_tid);
// Read data back into registers
if (!MEMOIZE)
{
CopySegment(cached_segment, smem_raking_ptr, Int2Type<0>());
}
internal::ThreadScanInclusive(cached_segment, cached_segment, scan_op, raking_partial, apply_prefix);
// Write data back to smem
CopySegment(smem_raking_ptr, cached_segment, Int2Type<0>());
}
//---------------------------------------------------------------------
// Constructors
//---------------------------------------------------------------------
/// Constructor
__device__ __forceinline__ BlockScanRaking(
TempStorage &temp_storage)
:
temp_storage(temp_storage.Alias()),
linear_tid(RowMajorTid(BLOCK_DIM_X, BLOCK_DIM_Y, BLOCK_DIM_Z))
{}
//---------------------------------------------------------------------
// Exclusive scans
//---------------------------------------------------------------------
/// Computes an exclusive thread block-wide prefix scan using the specified binary \p scan_op functor. Each thread contributes one input element. With no initial value, the output computed for <em>thread</em><sub>0</sub> is undefined.
template <typename ScanOp>
__device__ __forceinline__ void ExclusiveScan(
T input, ///< [in] Calling thread's input item
T &exclusive_output, ///< [out] Calling thread's output item (may be aliased to \p input)
ScanOp scan_op) ///< [in] Binary scan operator
{
if (WARP_SYNCHRONOUS)
{
// Short-circuit directly to warp-synchronous scan
WarpScan(temp_storage.warp_scan).ExclusiveScan(input, exclusive_output, scan_op);
}
else
{
// Place thread partial into shared memory raking grid
T *placement_ptr = BlockRakingLayout::PlacementPtr(temp_storage.raking_grid, linear_tid);
*placement_ptr = input;
CTA_SYNC();
// Reduce parallelism down to just raking threads
if (linear_tid < RAKING_THREADS)
{
// Raking upsweep reduction across shared partials
T upsweep_partial = Upsweep(scan_op);
// Warp-synchronous scan
T exclusive_partial;
WarpScan(temp_storage.warp_scan).ExclusiveScan(upsweep_partial, exclusive_partial, scan_op);
// Exclusive raking downsweep scan
ExclusiveDownsweep(scan_op, exclusive_partial, (linear_tid != 0));
}
CTA_SYNC();
// Grab thread prefix from shared memory
exclusive_output = *placement_ptr;
}
}
/// Computes an exclusive thread block-wide prefix scan using the specified binary \p scan_op functor. Each thread contributes one input element.
template <typename ScanOp>
__device__ __forceinline__ void ExclusiveScan(
T input, ///< [in] Calling thread's input items
T &output, ///< [out] Calling thread's output items (may be aliased to \p input)
const T &initial_value, ///< [in] Initial value to seed the exclusive scan
ScanOp scan_op) ///< [in] Binary scan operator
{
if (WARP_SYNCHRONOUS)
{
// Short-circuit directly to warp-synchronous scan
WarpScan(temp_storage.warp_scan).ExclusiveScan(input, output, initial_value, scan_op);
}
else
{
// Place thread partial into shared memory raking grid
T *placement_ptr = BlockRakingLayout::PlacementPtr(temp_storage.raking_grid, linear_tid);
*placement_ptr = input;
CTA_SYNC();
// Reduce parallelism down to just raking threads
if (linear_tid < RAKING_THREADS)
{
// Raking upsweep reduction across shared partials
T upsweep_partial = Upsweep(scan_op);
// Exclusive Warp-synchronous scan
T exclusive_partial;
WarpScan(temp_storage.warp_scan).ExclusiveScan(upsweep_partial, exclusive_partial, initial_value, scan_op);
// Exclusive raking downsweep scan
ExclusiveDownsweep(scan_op, exclusive_partial);
}
CTA_SYNC();
// Grab exclusive partial from shared memory
output = *placement_ptr;
}
}
/// Computes an exclusive thread block-wide prefix scan using the specified binary \p scan_op functor. Each thread contributes one input element. Also provides every thread with the block-wide \p block_aggregate of all inputs. With no initial value, the output computed for <em>thread</em><sub>0</sub> is undefined.
template <typename ScanOp>
__device__ __forceinline__ void ExclusiveScan(
T input, ///< [in] Calling thread's input item
T &output, ///< [out] Calling thread's output item (may be aliased to \p input)
ScanOp scan_op, ///< [in] Binary scan operator
T &block_aggregate) ///< [out] Threadblock-wide aggregate reduction of input items
{
if (WARP_SYNCHRONOUS)
{
// Short-circuit directly to warp-synchronous scan
WarpScan(temp_storage.warp_scan).ExclusiveScan(input, output, scan_op, block_aggregate);
}
else
{
// Place thread partial into shared memory raking grid
T *placement_ptr = BlockRakingLayout::PlacementPtr(temp_storage.raking_grid, linear_tid);
*placement_ptr = input;
CTA_SYNC();
// Reduce parallelism down to just raking threads
if (linear_tid < RAKING_THREADS)
{
// Raking upsweep reduction across shared partials
T upsweep_partial= Upsweep(scan_op);
// Warp-synchronous scan
T inclusive_partial;
T exclusive_partial;
WarpScan(temp_storage.warp_scan).Scan(upsweep_partial, inclusive_partial, exclusive_partial, scan_op);
// Exclusive raking downsweep scan
ExclusiveDownsweep(scan_op, exclusive_partial, (linear_tid != 0));
// Broadcast aggregate to all threads
if (linear_tid == RAKING_THREADS - 1)
temp_storage.block_aggregate = inclusive_partial;
}
CTA_SYNC();
// Grab thread prefix from shared memory
output = *placement_ptr;
// Retrieve block aggregate
block_aggregate = temp_storage.block_aggregate;
}
}
/// Computes an exclusive thread block-wide prefix scan using the specified binary \p scan_op functor. Each thread contributes one input element. Also provides every thread with the block-wide \p block_aggregate of all inputs.
template <typename ScanOp>
__device__ __forceinline__ void ExclusiveScan(
T input, ///< [in] Calling thread's input items
T &output, ///< [out] Calling thread's output items (may be aliased to \p input)
const T &initial_value, ///< [in] Initial value to seed the exclusive scan
ScanOp scan_op, ///< [in] Binary scan operator
T &block_aggregate) ///< [out] Threadblock-wide aggregate reduction of input items
{
if (WARP_SYNCHRONOUS)
{
// Short-circuit directly to warp-synchronous scan
WarpScan(temp_storage.warp_scan).ExclusiveScan(input, output, initial_value, scan_op, block_aggregate);
}
else
{
// Place thread partial into shared memory raking grid
T *placement_ptr = BlockRakingLayout::PlacementPtr(temp_storage.raking_grid, linear_tid);
*placement_ptr = input;
CTA_SYNC();
// Reduce parallelism down to just raking threads
if (linear_tid < RAKING_THREADS)
{
// Raking upsweep reduction across shared partials
T upsweep_partial = Upsweep(scan_op);
// Warp-synchronous scan
T exclusive_partial;
WarpScan(temp_storage.warp_scan).ExclusiveScan(upsweep_partial, exclusive_partial, initial_value, scan_op, block_aggregate);
// Exclusive raking downsweep scan
ExclusiveDownsweep(scan_op, exclusive_partial);
// Broadcast aggregate to other threads
if (linear_tid == 0)
temp_storage.block_aggregate = block_aggregate;
}
CTA_SYNC();
// Grab exclusive partial from shared memory
output = *placement_ptr;
// Retrieve block aggregate
block_aggregate = temp_storage.block_aggregate;
}
}
/// Computes an exclusive thread block-wide prefix scan using the specified binary \p scan_op functor. Each thread contributes one input element. the call-back functor \p block_prefix_callback_op is invoked by the first warp in the block, and the value returned by <em>lane</em><sub>0</sub> in that warp is used as the "seed" value that logically prefixes the thread block's scan inputs. Also provides every thread with the block-wide \p block_aggregate of all inputs.
template <
typename ScanOp,
typename BlockPrefixCallbackOp>
__device__ __forceinline__ void ExclusiveScan(
T input, ///< [in] Calling thread's input item
T &output, ///< [out] Calling thread's output item (may be aliased to \p input)
ScanOp scan_op, ///< [in] Binary scan operator
BlockPrefixCallbackOp &block_prefix_callback_op) ///< [in-out] <b>[<em>warp</em><sub>0</sub> only]</b> Call-back functor for specifying a thread block-wide prefix to be applied to all inputs.
{
if (WARP_SYNCHRONOUS)
{
// Short-circuit directly to warp-synchronous scan
T block_aggregate;
WarpScan warp_scan(temp_storage.warp_scan);
warp_scan.ExclusiveScan(input, output, scan_op, block_aggregate);
// Obtain warp-wide prefix in lane0, then broadcast to other lanes
T block_prefix = block_prefix_callback_op(block_aggregate);
block_prefix = warp_scan.Broadcast(block_prefix, 0);
output = scan_op(block_prefix, output);
if (linear_tid == 0)
output = block_prefix;
}
else
{
// Place thread partial into shared memory raking grid
T *placement_ptr = BlockRakingLayout::PlacementPtr(temp_storage.raking_grid, linear_tid);
*placement_ptr = input;
CTA_SYNC();
// Reduce parallelism down to just raking threads
if (linear_tid < RAKING_THREADS)
{
WarpScan warp_scan(temp_storage.warp_scan);
// Raking upsweep reduction across shared partials
T upsweep_partial = Upsweep(scan_op);
// Warp-synchronous scan
T exclusive_partial, block_aggregate;
warp_scan.ExclusiveScan(upsweep_partial, exclusive_partial, scan_op, block_aggregate);
// Obtain block-wide prefix in lane0, then broadcast to other lanes
T block_prefix = block_prefix_callback_op(block_aggregate);
block_prefix = warp_scan.Broadcast(block_prefix, 0);
// Update prefix with warpscan exclusive partial
T downsweep_prefix = scan_op(block_prefix, exclusive_partial);
if (linear_tid == 0)
downsweep_prefix = block_prefix;
// Exclusive raking downsweep scan
ExclusiveDownsweep(scan_op, downsweep_prefix);
}
CTA_SYNC();
// Grab thread prefix from shared memory
output = *placement_ptr;
}
}
//---------------------------------------------------------------------
// Inclusive scans
//---------------------------------------------------------------------
/// Computes an inclusive thread block-wide prefix scan using the specified binary \p scan_op functor. Each thread contributes one input element.
template <typename ScanOp>
__device__ __forceinline__ void InclusiveScan(
T input, ///< [in] Calling thread's input item
T &output, ///< [out] Calling thread's output item (may be aliased to \p input)
ScanOp scan_op) ///< [in] Binary scan operator
{
if (WARP_SYNCHRONOUS)
{
// Short-circuit directly to warp-synchronous scan
WarpScan(temp_storage.warp_scan).InclusiveScan(input, output, scan_op);
}
else
{
// Place thread partial into shared memory raking grid
T *placement_ptr = BlockRakingLayout::PlacementPtr(temp_storage.raking_grid, linear_tid);
*placement_ptr = input;
CTA_SYNC();
// Reduce parallelism down to just raking threads
if (linear_tid < RAKING_THREADS)
{
// Raking upsweep reduction across shared partials
T upsweep_partial = Upsweep(scan_op);
// Exclusive Warp-synchronous scan
T exclusive_partial;
WarpScan(temp_storage.warp_scan).ExclusiveScan(upsweep_partial, exclusive_partial, scan_op);
// Inclusive raking downsweep scan
InclusiveDownsweep(scan_op, exclusive_partial, (linear_tid != 0));
}
CTA_SYNC();
// Grab thread prefix from shared memory
output = *placement_ptr;
}
}
/// Computes an inclusive thread block-wide prefix scan using the specified binary \p scan_op functor. Each thread contributes one input element. Also provides every thread with the block-wide \p block_aggregate of all inputs.
template <typename ScanOp>
__device__ __forceinline__ void InclusiveScan(
T input, ///< [in] Calling thread's input item
T &output, ///< [out] Calling thread's output item (may be aliased to \p input)
ScanOp scan_op, ///< [in] Binary scan operator
T &block_aggregate) ///< [out] Threadblock-wide aggregate reduction of input items
{
if (WARP_SYNCHRONOUS)
{
// Short-circuit directly to warp-synchronous scan
WarpScan(temp_storage.warp_scan).InclusiveScan(input, output, scan_op, block_aggregate);
}
else
{
// Place thread partial into shared memory raking grid
T *placement_ptr = BlockRakingLayout::PlacementPtr(temp_storage.raking_grid, linear_tid);
*placement_ptr = input;
CTA_SYNC();
// Reduce parallelism down to just raking threads
if (linear_tid < RAKING_THREADS)
{
// Raking upsweep reduction across shared partials
T upsweep_partial = Upsweep(scan_op);
// Warp-synchronous scan
T inclusive_partial;
T exclusive_partial;
WarpScan(temp_storage.warp_scan).Scan(upsweep_partial, inclusive_partial, exclusive_partial, scan_op);
// Inclusive raking downsweep scan
InclusiveDownsweep(scan_op, exclusive_partial, (linear_tid != 0));
// Broadcast aggregate to all threads
if (linear_tid == RAKING_THREADS - 1)
temp_storage.block_aggregate = inclusive_partial;
}
CTA_SYNC();
// Grab thread prefix from shared memory
output = *placement_ptr;
// Retrieve block aggregate
block_aggregate = temp_storage.block_aggregate;
}
}
/// Computes an inclusive thread block-wide prefix scan using the specified binary \p scan_op functor. Each thread contributes one input element. the call-back functor \p block_prefix_callback_op is invoked by the first warp in the block, and the value returned by <em>lane</em><sub>0</sub> in that warp is used as the "seed" value that logically prefixes the thread block's scan inputs. Also provides every thread with the block-wide \p block_aggregate of all inputs.
template <
typename ScanOp,
typename BlockPrefixCallbackOp>
__device__ __forceinline__ void InclusiveScan(
T input, ///< [in] Calling thread's input item
T &output, ///< [out] Calling thread's output item (may be aliased to \p input)
ScanOp scan_op, ///< [in] Binary scan operator
BlockPrefixCallbackOp &block_prefix_callback_op) ///< [in-out] <b>[<em>warp</em><sub>0</sub> only]</b> Call-back functor for specifying a thread block-wide prefix to be applied to all inputs.
{
if (WARP_SYNCHRONOUS)
{
// Short-circuit directly to warp-synchronous scan
T block_aggregate;
WarpScan warp_scan(temp_storage.warp_scan);
warp_scan.InclusiveScan(input, output, scan_op, block_aggregate);
// Obtain warp-wide prefix in lane0, then broadcast to other lanes
T block_prefix = block_prefix_callback_op(block_aggregate);
block_prefix = warp_scan.Broadcast(block_prefix, 0);
// Update prefix with exclusive warpscan partial
output = scan_op(block_prefix, output);
}
else
{
// Place thread partial into shared memory raking grid
T *placement_ptr = BlockRakingLayout::PlacementPtr(temp_storage.raking_grid, linear_tid);
*placement_ptr = input;
CTA_SYNC();
// Reduce parallelism down to just raking threads
if (linear_tid < RAKING_THREADS)
{
WarpScan warp_scan(temp_storage.warp_scan);
// Raking upsweep reduction across shared partials
T upsweep_partial = Upsweep(scan_op);
// Warp-synchronous scan
T exclusive_partial, block_aggregate;
warp_scan.ExclusiveScan(upsweep_partial, exclusive_partial, scan_op, block_aggregate);
// Obtain block-wide prefix in lane0, then broadcast to other lanes
T block_prefix = block_prefix_callback_op(block_aggregate);
block_prefix = warp_scan.Broadcast(block_prefix, 0);
// Update prefix with warpscan exclusive partial
T downsweep_prefix = scan_op(block_prefix, exclusive_partial);
if (linear_tid == 0)
downsweep_prefix = block_prefix;
// Inclusive raking downsweep scan
InclusiveDownsweep(scan_op, downsweep_prefix);
}
CTA_SYNC();
// Grab thread prefix from shared memory
output = *placement_ptr;
}
}
};
} // CUB namespace
CUB_NS_POSTFIX // Optional outer namespace(s)