LIVE / diffvg.cpp
Xu Ma
upload all files
28958dc
#include "diffvg.h"
#include "aabb.h"
#include "shape.h"
#include "sample_boundary.h"
#include "atomic.h"
#include "cdf.h"
#include "compute_distance.h"
#include "cuda_utils.h"
#include "edge_query.h"
#include "filter.h"
#include "matrix.h"
#include "parallel.h"
#include "pcg.h"
#include "ptr.h"
#include "scene.h"
#include "vector.h"
#include "winding_number.h"
#include "within_distance.h"
#include <cassert>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <thrust/execution_policy.h>
#include <thrust/sort.h>
namespace py = pybind11;
struct Command {
int shape_group_id;
int shape_id;
int point_id; // Only used by path
};
DEVICE
bool is_inside(const SceneData &scene_data,
int shape_group_id,
const Vector2f &pt,
EdgeQuery *edge_query) {
const ShapeGroup &shape_group = scene_data.shape_groups[shape_group_id];
// pt is in canvas space, transform it to shape's local space
auto local_pt = xform_pt(shape_group.canvas_to_shape, pt);
const auto &bvh_nodes = scene_data.shape_groups_bvh_nodes[shape_group_id];
const AABB &bbox = bvh_nodes[2 * shape_group.num_shapes - 2].box;
if (!inside(bbox, local_pt)) {
return false;
}
auto winding_number = 0;
// Traverse the shape group BVH
constexpr auto max_bvh_stack_size = 64;
int bvh_stack[max_bvh_stack_size];
auto stack_size = 0;
bvh_stack[stack_size++] = 2 * shape_group.num_shapes - 2;
while (stack_size > 0) {
const BVHNode &node = bvh_nodes[bvh_stack[--stack_size]];
if (node.child1 < 0) {
// leaf
auto shape_id = node.child0;
auto w = compute_winding_number(
scene_data.shapes[shape_id], scene_data.path_bvhs[shape_id], local_pt);
winding_number += w;
if (edge_query != nullptr) {
if (edge_query->shape_group_id == shape_group_id &&
edge_query->shape_id == shape_id) {
if ((shape_group.use_even_odd_rule && abs(w) % 2 == 1) ||
(!shape_group.use_even_odd_rule && w != 0)) {
edge_query->hit = true;
}
}
}
} else {
assert(node.child0 >= 0 && node.child1 >= 0);
const AABB &b0 = bvh_nodes[node.child0].box;
if (inside(b0, local_pt)) {
bvh_stack[stack_size++] = node.child0;
}
const AABB &b1 = bvh_nodes[node.child1].box;
if (inside(b1, local_pt)) {
bvh_stack[stack_size++] = node.child1;
}
assert(stack_size <= max_bvh_stack_size);
}
}
if (shape_group.use_even_odd_rule) {
return abs(winding_number) % 2 == 1;
} else {
return winding_number != 0;
}
}
DEVICE void accumulate_boundary_gradient(const Shape &shape,
float contrib,
float t,
const Vector2f &normal,
const BoundaryData &boundary_data,
Shape &d_shape,
const Matrix3x3f &shape_to_canvas,
const Vector2f &local_boundary_pt,
Matrix3x3f &d_shape_to_canvas) {
assert(isfinite(contrib));
assert(isfinite(normal));
// According to Reynold transport theorem,
// the Jacobian of the boundary integral is dot(velocity, normal),
// where the velocity depends on the variable being differentiated with.
if (boundary_data.is_stroke) {
auto has_path_thickness = false;
if (shape.type == ShapeType::Path) {
const Path &path = *(const Path *)shape.ptr;
has_path_thickness = path.thickness != nullptr;
}
// differentiate stroke width: velocity is the same as normal
if (has_path_thickness) {
Path *d_p = (Path*)d_shape.ptr;
auto base_point_id = boundary_data.path.base_point_id;
auto point_id = boundary_data.path.point_id;
auto t = boundary_data.path.t;
const Path &path = *(const Path *)shape.ptr;
if (path.num_control_points[base_point_id] == 0) {
// Straight line
auto i0 = point_id;
auto i1 = (point_id + 1) % path.num_points;
// r = r0 + t * (r1 - r0)
atomic_add(&d_p->thickness[i0], (1 - t) * contrib);
atomic_add(&d_p->thickness[i1], ( t) * contrib);
} else if (path.num_control_points[base_point_id] == 1) {
// Quadratic Bezier curve
auto i0 = point_id;
auto i1 = point_id + 1;
auto i2 = (point_id + 2) % path.num_points;
// r = (1-t)^2r0 + 2(1-t)t r1 + t^2 r2
atomic_add(&d_p->thickness[i0], square(1 - t) * contrib);
atomic_add(&d_p->thickness[i1], (2*(1-t)*t) * contrib);
atomic_add(&d_p->thickness[i2], (t*t) * contrib);
} else if (path.num_control_points[base_point_id] == 2) {
auto i0 = point_id;
auto i1 = point_id + 1;
auto i2 = point_id + 2;
auto i3 = (point_id + 3) % path.num_points;
// r = (1-t)^3r0 + 3*(1-t)^2tr1 + 3*(1-t)t^2r2 + t^3r3
atomic_add(&d_p->thickness[i0], cubic(1 - t) * contrib);
atomic_add(&d_p->thickness[i1], 3 * square(1 - t) * t * contrib);
atomic_add(&d_p->thickness[i2], 3 * (1 - t) * t * t * contrib);
atomic_add(&d_p->thickness[i3], t * t * t * contrib);
} else {
assert(false);
}
} else {
atomic_add(&d_shape.stroke_width, contrib);
}
}
switch (shape.type) {
case ShapeType::Circle: {
Circle *d_p = (Circle*)d_shape.ptr;
// velocity for the center is (1, 0) for x and (0, 1) for y
atomic_add(&d_p->center[0], normal * contrib);
// velocity for the radius is the same as the normal
atomic_add(&d_p->radius, contrib);
break;
} case ShapeType::Ellipse: {
Ellipse *d_p = (Ellipse*)d_shape.ptr;
// velocity for the center is (1, 0) for x and (0, 1) for y
atomic_add(&d_p->center[0], normal * contrib);
// velocity for the radius:
// x = center.x + r.x * cos(2pi * t)
// y = center.y + r.y * sin(2pi * t)
// for r.x: (cos(2pi * t), 0)
// for r.y: (0, sin(2pi * t))
atomic_add(&d_p->radius.x, cos(2 * float(M_PI) * t) * normal.x * contrib);
atomic_add(&d_p->radius.y, sin(2 * float(M_PI) * t) * normal.y * contrib);
break;
} case ShapeType::Path: {
Path *d_p = (Path*)d_shape.ptr;
auto base_point_id = boundary_data.path.base_point_id;
auto point_id = boundary_data.path.point_id;
auto t = boundary_data.path.t;
const Path &path = *(const Path *)shape.ptr;
if (path.num_control_points[base_point_id] == 0) {
// Straight line
auto i0 = point_id;
auto i1 = (point_id + 1) % path.num_points;
// pt = p0 + t * (p1 - p0)
// velocity for p0.x: (1 - t, 0)
// p0.y: ( 0, 1 - t)
// p1.x: ( t, 0)
// p1.y: ( 0, t)
atomic_add(&d_p->points[2 * i0 + 0], (1 - t) * normal.x * contrib);
atomic_add(&d_p->points[2 * i0 + 1], (1 - t) * normal.y * contrib);
atomic_add(&d_p->points[2 * i1 + 0], ( t) * normal.x * contrib);
atomic_add(&d_p->points[2 * i1 + 1], ( t) * normal.y * contrib);
} else if (path.num_control_points[base_point_id] == 1) {
// Quadratic Bezier curve
auto i0 = point_id;
auto i1 = point_id + 1;
auto i2 = (point_id + 2) % path.num_points;
// pt = (1-t)^2p0 + 2(1-t)t p1 + t^2 p2
// velocity for p0.x: ((1-t)^2, 0)
// p0.y: ( 0, (1-t)^2)
// p1.x: (2(1-t)t, 0)
// p1.y: ( 0, 2(1-t)t)
// p1.x: ( t^2, 0)
// p1.y: ( 0, t^2)
atomic_add(&d_p->points[2 * i0 + 0], square(1 - t) * normal.x * contrib);
atomic_add(&d_p->points[2 * i0 + 1], square(1 - t) * normal.y * contrib);
atomic_add(&d_p->points[2 * i1 + 0], (2*(1-t)*t) * normal.x * contrib);
atomic_add(&d_p->points[2 * i1 + 1], (2*(1-t)*t) * normal.y * contrib);
atomic_add(&d_p->points[2 * i2 + 0], (t*t) * normal.x * contrib);
atomic_add(&d_p->points[2 * i2 + 1], (t*t) * normal.y * contrib);
} else if (path.num_control_points[base_point_id] == 2) {
auto i0 = point_id;
auto i1 = point_id + 1;
auto i2 = point_id + 2;
auto i3 = (point_id + 3) % path.num_points;
// pt = (1-t)^3p0 + 3*(1-t)^2tp1 + 3*(1-t)t^2p2 + t^3p3
// velocity for p0.x: ( (1-t)^3, 0)
// p0.y: ( 0, (1-t)^3)
// p1.x: (3*(1-t)^2t, 0)
// p1.y: ( 0, 3*(1-t)^2t)
// p2.x: (3*(1-t)t^2, 0)
// p2.y: ( 0, 3*(1-t)t^2)
// p2.x: ( t^3, 0)
// p2.y: ( 0, t^3)
atomic_add(&d_p->points[2 * i0 + 0], cubic(1 - t) * normal.x * contrib);
atomic_add(&d_p->points[2 * i0 + 1], cubic(1 - t) * normal.y * contrib);
atomic_add(&d_p->points[2 * i1 + 0], 3 * square(1 - t) * t * normal.x * contrib);
atomic_add(&d_p->points[2 * i1 + 1], 3 * square(1 - t) * t * normal.y * contrib);
atomic_add(&d_p->points[2 * i2 + 0], 3 * (1 - t) * t * t * normal.x * contrib);
atomic_add(&d_p->points[2 * i2 + 1], 3 * (1 - t) * t * t * normal.y * contrib);
atomic_add(&d_p->points[2 * i3 + 0], t * t * t * normal.x * contrib);
atomic_add(&d_p->points[2 * i3 + 1], t * t * t * normal.y * contrib);
} else {
assert(false);
}
break;
} case ShapeType::Rect: {
Rect *d_p = (Rect*)d_shape.ptr;
// The velocity depends on the position of the boundary
if (normal == Vector2f{-1, 0}) {
// left
// velocity for p_min is (1, 0) for x and (0, 0) for y
atomic_add(&d_p->p_min.x, -contrib);
} else if (normal == Vector2f{1, 0}) {
// right
// velocity for p_max is (1, 0) for x and (0, 0) for y
atomic_add(&d_p->p_max.x, contrib);
} else if (normal == Vector2f{0, -1}) {
// top
// velocity for p_min is (0, 0) for x and (0, 1) for y
atomic_add(&d_p->p_min.y, -contrib);
} else if (normal == Vector2f{0, 1}) {
// bottom
// velocity for p_max is (0, 0) for x and (0, 1) for y
atomic_add(&d_p->p_max.y, contrib);
} else {
// incorrect normal assignment?
assert(false);
}
break;
} default: {
assert(false);
break;
}
}
// for shape_to_canvas we have the following relationship:
// boundary_pt = xform_pt(shape_to_canvas, local_pt)
// the velocity is the derivative of boundary_pt with respect to shape_to_canvas
// we can use reverse-mode AD to compute the dot product of the velocity and the Jacobian
// by passing the normal in d_xform_pt
auto d_shape_to_canvas_ = Matrix3x3f();
auto d_local_boundary_pt = Vector2f{0, 0};
d_xform_pt(shape_to_canvas,
local_boundary_pt,
normal * contrib,
d_shape_to_canvas_,
d_local_boundary_pt);
atomic_add(&d_shape_to_canvas(0, 0), d_shape_to_canvas_);
}
DEVICE
Vector4f sample_color(const ColorType &color_type,
void *color,
const Vector2f &pt) {
switch (color_type) {
case ColorType::Constant: {
auto c = (const Constant*)color;
assert(isfinite(c->color));
return c->color;
} case ColorType::LinearGradient: {
auto c = (const LinearGradient*)color;
// Project pt to (c->begin, c->end)
auto beg = c->begin;
auto end = c->end;
auto t = dot(pt - beg, end - beg) / max(dot(end - beg, end - beg), 1e-3f);
// Find the correponding stop:
if (t < c->stop_offsets[0]) {
return Vector4f{c->stop_colors[0],
c->stop_colors[1],
c->stop_colors[2],
c->stop_colors[3]};
}
for (int i = 0; i < c->num_stops - 1; i++) {
auto offset_curr = c->stop_offsets[i];
auto offset_next = c->stop_offsets[i + 1];
assert(offset_next > offset_curr);
if (t >= offset_curr && t < offset_next) {
auto color_curr = Vector4f{
c->stop_colors[4 * i + 0],
c->stop_colors[4 * i + 1],
c->stop_colors[4 * i + 2],
c->stop_colors[4 * i + 3]};
auto color_next = Vector4f{
c->stop_colors[4 * (i + 1) + 0],
c->stop_colors[4 * (i + 1) + 1],
c->stop_colors[4 * (i + 1) + 2],
c->stop_colors[4 * (i + 1) + 3]};
auto tt = (t - offset_curr) / (offset_next - offset_curr);
assert(isfinite(tt));
assert(isfinite(color_curr));
assert(isfinite(color_next));
return color_curr * (1 - tt) + color_next * tt;
}
}
return Vector4f{c->stop_colors[4 * (c->num_stops - 1) + 0],
c->stop_colors[4 * (c->num_stops - 1) + 1],
c->stop_colors[4 * (c->num_stops - 1) + 2],
c->stop_colors[4 * (c->num_stops - 1) + 3]};
} case ColorType::RadialGradient: {
auto c = (const RadialGradient*)color;
// Distance from pt to center
auto offset = pt - c->center;
auto normalized_offset = offset / c->radius;
auto t = length(normalized_offset);
// Find the correponding stop:
if (t < c->stop_offsets[0]) {
return Vector4f{c->stop_colors[0],
c->stop_colors[1],
c->stop_colors[2],
c->stop_colors[3]};
}
for (int i = 0; i < c->num_stops - 1; i++) {
auto offset_curr = c->stop_offsets[i];
auto offset_next = c->stop_offsets[i + 1];
assert(offset_next > offset_curr);
if (t >= offset_curr && t < offset_next) {
auto color_curr = Vector4f{
c->stop_colors[4 * i + 0],
c->stop_colors[4 * i + 1],
c->stop_colors[4 * i + 2],
c->stop_colors[4 * i + 3]};
auto color_next = Vector4f{
c->stop_colors[4 * (i + 1) + 0],
c->stop_colors[4 * (i + 1) + 1],
c->stop_colors[4 * (i + 1) + 2],
c->stop_colors[4 * (i + 1) + 3]};
auto tt = (t - offset_curr) / (offset_next - offset_curr);
assert(isfinite(tt));
assert(isfinite(color_curr));
assert(isfinite(color_next));
return color_curr * (1 - tt) + color_next * tt;
}
}
return Vector4f{c->stop_colors[4 * (c->num_stops - 1) + 0],
c->stop_colors[4 * (c->num_stops - 1) + 1],
c->stop_colors[4 * (c->num_stops - 1) + 2],
c->stop_colors[4 * (c->num_stops - 1) + 3]};
} default: {
assert(false);
}
}
return Vector4f{};
}
DEVICE
void d_sample_color(const ColorType &color_type,
void *color_ptr,
const Vector2f &pt,
const Vector4f &d_color,
void *d_color_ptr,
float *d_translation) {
switch (color_type) {
case ColorType::Constant: {
auto d_c = (Constant*)d_color_ptr;
atomic_add(&d_c->color[0], d_color);
return;
} case ColorType::LinearGradient: {
auto c = (const LinearGradient*)color_ptr;
auto d_c = (LinearGradient*)d_color_ptr;
// Project pt to (c->begin, c->end)
auto beg = c->begin;
auto end = c->end;
auto t = dot(pt - beg, end - beg) / max(dot(end - beg, end - beg), 1e-3f);
// Find the correponding stop:
if (t < c->stop_offsets[0]) {
atomic_add(&d_c->stop_colors[0], d_color);
return;
}
for (int i = 0; i < c->num_stops - 1; i++) {
auto offset_curr = c->stop_offsets[i];
auto offset_next = c->stop_offsets[i + 1];
assert(offset_next > offset_curr);
if (t >= offset_curr && t < offset_next) {
auto color_curr = Vector4f{
c->stop_colors[4 * i + 0],
c->stop_colors[4 * i + 1],
c->stop_colors[4 * i + 2],
c->stop_colors[4 * i + 3]};
auto color_next = Vector4f{
c->stop_colors[4 * (i + 1) + 0],
c->stop_colors[4 * (i + 1) + 1],
c->stop_colors[4 * (i + 1) + 2],
c->stop_colors[4 * (i + 1) + 3]};
auto tt = (t - offset_curr) / (offset_next - offset_curr);
// return color_curr * (1 - tt) + color_next * tt;
auto d_color_curr = d_color * (1 - tt);
auto d_color_next = d_color * tt;
auto d_tt = sum(d_color * (color_next - color_curr));
auto d_offset_next = -d_tt * tt / (offset_next - offset_curr);
auto d_offset_curr = d_tt * ((tt - 1.f) / (offset_next - offset_curr));
auto d_t = d_tt / (offset_next - offset_curr);
assert(isfinite(d_tt));
atomic_add(&d_c->stop_colors[4 * i], d_color_curr);
atomic_add(&d_c->stop_colors[4 * (i + 1)], d_color_next);
atomic_add(&d_c->stop_offsets[i], d_offset_curr);
atomic_add(&d_c->stop_offsets[i + 1], d_offset_next);
// auto t = dot(pt - beg, end - beg) / max(dot(end - beg, end - beg), 1e-6f);
// l = max(dot(end - beg, end - beg), 1e-3f)
// t = dot(pt - beg, end - beg) / l;
auto l = max(dot(end - beg, end - beg), 1e-3f);
auto d_beg = d_t * (-(pt - beg)-(end - beg)) / l;
auto d_end = d_t * (pt - beg) / l;
auto d_l = -d_t * t / l;
if (dot(end - beg, end - beg) > 1e-3f) {
d_beg += 2 * d_l * (beg - end);
d_end += 2 * d_l * (end - beg);
}
atomic_add(&d_c->begin[0], d_beg);
atomic_add(&d_c->end[0], d_end);
if (d_translation != nullptr) {
atomic_add(d_translation, (d_beg + d_end));
}
return;
}
}
atomic_add(&d_c->stop_colors[4 * (c->num_stops - 1)], d_color);
return;
} case ColorType::RadialGradient: {
auto c = (const RadialGradient*)color_ptr;
auto d_c = (RadialGradient*)d_color_ptr;
// Distance from pt to center
auto offset = pt - c->center;
auto normalized_offset = offset / c->radius;
auto t = length(normalized_offset);
// Find the correponding stop:
if (t < c->stop_offsets[0]) {
atomic_add(&d_c->stop_colors[0], d_color);
return;
}
for (int i = 0; i < c->num_stops - 1; i++) {
auto offset_curr = c->stop_offsets[i];
auto offset_next = c->stop_offsets[i + 1];
assert(offset_next > offset_curr);
if (t >= offset_curr && t < offset_next) {
auto color_curr = Vector4f{
c->stop_colors[4 * i + 0],
c->stop_colors[4 * i + 1],
c->stop_colors[4 * i + 2],
c->stop_colors[4 * i + 3]};
auto color_next = Vector4f{
c->stop_colors[4 * (i + 1) + 0],
c->stop_colors[4 * (i + 1) + 1],
c->stop_colors[4 * (i + 1) + 2],
c->stop_colors[4 * (i + 1) + 3]};
auto tt = (t - offset_curr) / (offset_next - offset_curr);
assert(isfinite(tt));
// return color_curr * (1 - tt) + color_next * tt;
auto d_color_curr = d_color * (1 - tt);
auto d_color_next = d_color * tt;
auto d_tt = sum(d_color * (color_next - color_curr));
auto d_offset_next = -d_tt * tt / (offset_next - offset_curr);
auto d_offset_curr = d_tt * ((tt - 1.f) / (offset_next - offset_curr));
auto d_t = d_tt / (offset_next - offset_curr);
assert(isfinite(d_t));
atomic_add(&d_c->stop_colors[4 * i], d_color_curr);
atomic_add(&d_c->stop_colors[4 * (i + 1)], d_color_next);
atomic_add(&d_c->stop_offsets[i], d_offset_curr);
atomic_add(&d_c->stop_offsets[i + 1], d_offset_next);
// offset = pt - c->center
// normalized_offset = offset / c->radius
// t = length(normalized_offset)
auto d_normalized_offset = d_length(normalized_offset, d_t);
auto d_offset = d_normalized_offset / c->radius;
auto d_radius = -d_normalized_offset * offset / (c->radius * c->radius);
auto d_center = -d_offset;
atomic_add(&d_c->center[0], d_center);
atomic_add(&d_c->radius[0], d_radius);
if (d_translation != nullptr) {
atomic_add(d_translation, d_center);
}
}
}
atomic_add(&d_c->stop_colors[4 * (c->num_stops - 1)], d_color);
return;
} default: {
assert(false);
}
}
}
struct Fragment {
Vector3f color;
float alpha;
int group_id;
bool is_stroke;
};
struct PrefilterFragment {
Vector3f color;
float alpha;
int group_id;
bool is_stroke;
int shape_id;
float distance;
Vector2f closest_pt;
ClosestPointPathInfo path_info;
bool within_distance;
};
DEVICE
Vector4f sample_color(const SceneData &scene,
const Vector4f *background_color,
const Vector2f &screen_pt,
const Vector4f *d_color = nullptr,
EdgeQuery *edge_query = nullptr,
Vector4f *d_background_color = nullptr,
float *d_translation = nullptr) {
if (edge_query != nullptr) {
edge_query->hit = false;
}
// screen_pt is in screen space ([0, 1), [0, 1)),
// need to transform to canvas space
auto pt = screen_pt;
pt.x *= scene.canvas_width;
pt.y *= scene.canvas_height;
constexpr auto max_hit_shapes = 256;
constexpr auto max_bvh_stack_size = 64;
Fragment fragments[max_hit_shapes];
int bvh_stack[max_bvh_stack_size];
auto stack_size = 0;
auto num_fragments = 0;
bvh_stack[stack_size++] = 2 * scene.num_shape_groups - 2;
while (stack_size > 0) {
const BVHNode &node = scene.bvh_nodes[bvh_stack[--stack_size]];
if (node.child1 < 0) {
// leaf
auto group_id = node.child0;
const ShapeGroup &shape_group = scene.shape_groups[group_id];
if (shape_group.stroke_color != nullptr) {
if (within_distance(scene, group_id, pt, edge_query)) {
auto color_alpha = sample_color(shape_group.stroke_color_type,
shape_group.stroke_color,
pt);
Fragment f;
f.color = Vector3f{color_alpha[0], color_alpha[1], color_alpha[2]};
f.alpha = color_alpha[3];
f.group_id = group_id;
f.is_stroke = true;
assert(num_fragments < max_hit_shapes);
fragments[num_fragments++] = f;
}
}
if (shape_group.fill_color != nullptr) {
if (is_inside(scene, group_id, pt, edge_query)) {
auto color_alpha = sample_color(shape_group.fill_color_type,
shape_group.fill_color,
pt);
Fragment f;
f.color = Vector3f{color_alpha[0], color_alpha[1], color_alpha[2]};
f.alpha = color_alpha[3];
f.group_id = group_id;
f.is_stroke = false;
assert(num_fragments < max_hit_shapes);
fragments[num_fragments++] = f;
}
}
} else {
assert(node.child0 >= 0 && node.child1 >= 0);
const AABB &b0 = scene.bvh_nodes[node.child0].box;
if (inside(b0, pt, scene.bvh_nodes[node.child0].max_radius)) {
bvh_stack[stack_size++] = node.child0;
}
const AABB &b1 = scene.bvh_nodes[node.child1].box;
if (inside(b1, pt, scene.bvh_nodes[node.child1].max_radius)) {
bvh_stack[stack_size++] = node.child1;
}
assert(stack_size <= max_bvh_stack_size);
}
}
if (num_fragments <= 0) {
if (background_color != nullptr) {
if (d_background_color != nullptr) {
*d_background_color = *d_color;
}
return *background_color;
}
return Vector4f{0, 0, 0, 0};
}
// Sort the fragments from back to front (i.e. increasing order of group id)
// https://github.com/frigaut/yorick-imutil/blob/master/insort.c#L37
for (int i = 1; i < num_fragments; i++) {
auto j = i;
auto temp = fragments[j];
while (j > 0 && fragments[j - 1].group_id > temp.group_id) {
fragments[j] = fragments[j - 1];
j--;
}
fragments[j] = temp;
}
// Blend the color
Vector3f accum_color[max_hit_shapes];
float accum_alpha[max_hit_shapes];
// auto hit_opaque = false;
auto first_alpha = 0.f;
auto first_color = Vector3f{0, 0, 0};
if (background_color != nullptr) {
first_alpha = background_color->w;
first_color = Vector3f{background_color->x,
background_color->y,
background_color->z};
}
for (int i = 0; i < num_fragments; i++) {
const Fragment &fragment = fragments[i];
auto new_color = fragment.color;
auto new_alpha = fragment.alpha;
auto prev_alpha = i > 0 ? accum_alpha[i - 1] : first_alpha;
auto prev_color = i > 0 ? accum_color[i - 1] : first_color;
if (edge_query != nullptr) {
// Do we hit the target shape?
if (new_alpha >= 1.f && edge_query->hit) {
// A fully opaque shape in front of the target occludes it
edge_query->hit = false;
}
if (edge_query->shape_group_id == fragment.group_id) {
edge_query->hit = true;
}
}
// prev_color is alpha premultiplied, don't need to multiply with
// prev_alpha
accum_color[i] = prev_color * (1 - new_alpha) + new_alpha * new_color;
accum_alpha[i] = prev_alpha * (1 - new_alpha) + new_alpha;
}
auto final_color = accum_color[num_fragments - 1];
auto final_alpha = accum_alpha[num_fragments - 1];
if (final_alpha > 1e-6f) {
final_color /= final_alpha;
}
assert(isfinite(final_color));
assert(isfinite(final_alpha));
if (d_color != nullptr) {
// Backward pass
auto d_final_color = Vector3f{(*d_color)[0], (*d_color)[1], (*d_color)[2]};
auto d_final_alpha = (*d_color)[3];
auto d_curr_color = d_final_color;
auto d_curr_alpha = d_final_alpha;
if (final_alpha > 1e-6f) {
// final_color = curr_color / final_alpha
d_curr_color = d_final_color / final_alpha;
d_curr_alpha -= sum(d_final_color * final_color) / final_alpha;
}
assert(isfinite(*d_color));
assert(isfinite(d_curr_color));
assert(isfinite(d_curr_alpha));
for (int i = num_fragments - 1; i >= 0; i--) {
// color[n] = prev_color * (1 - new_alpha) + new_alpha * new_color;
// alpha[n] = prev_alpha * (1 - new_alpha) + new_alpha;
auto prev_alpha = i > 0 ? accum_alpha[i - 1] : first_alpha;
auto prev_color = i > 0 ? accum_color[i - 1] : first_color;
auto d_prev_alpha = d_curr_alpha * (1.f - fragments[i].alpha);
auto d_alpha_i = d_curr_alpha * (1.f - prev_alpha);
d_alpha_i += sum(d_curr_color * (fragments[i].color - prev_color));
auto d_prev_color = d_curr_color * (1 - fragments[i].alpha);
auto d_color_i = d_curr_color * fragments[i].alpha;
auto group_id = fragments[i].group_id;
if (fragments[i].is_stroke) {
d_sample_color(scene.shape_groups[group_id].stroke_color_type,
scene.shape_groups[group_id].stroke_color,
pt,
Vector4f{d_color_i[0], d_color_i[1], d_color_i[2], d_alpha_i},
scene.d_shape_groups[group_id].stroke_color,
d_translation);
} else {
d_sample_color(scene.shape_groups[group_id].fill_color_type,
scene.shape_groups[group_id].fill_color,
pt,
Vector4f{d_color_i[0], d_color_i[1], d_color_i[2], d_alpha_i},
scene.d_shape_groups[group_id].fill_color,
d_translation);
}
d_curr_color = d_prev_color;
d_curr_alpha = d_prev_alpha;
}
if (d_background_color != nullptr) {
d_background_color->x += d_curr_color.x;
d_background_color->y += d_curr_color.y;
d_background_color->z += d_curr_color.z;
d_background_color->w += d_curr_alpha;
}
}
return Vector4f{final_color[0], final_color[1], final_color[2], final_alpha};
}
DEVICE
float sample_distance(const SceneData &scene,
const Vector2f &screen_pt,
float weight,
const float *d_dist = nullptr,
float *d_translation = nullptr) {
// screen_pt is in screen space ([0, 1), [0, 1)),
// need to transform to canvas space
auto pt = screen_pt;
pt.x *= scene.canvas_width;
pt.y *= scene.canvas_height;
// for each shape
auto min_group_id = -1;
auto min_distance = 0.f;
auto min_shape_id = -1;
auto closest_pt = Vector2f{0, 0};
auto min_path_info = ClosestPointPathInfo{-1, -1, 0};
for (int group_id = scene.num_shape_groups - 1; group_id >= 0; group_id--) {
auto s = -1;
auto p = Vector2f{0, 0};
ClosestPointPathInfo local_path_info;
auto d = infinity<float>();
if (compute_distance(scene, group_id, pt, infinity<float>(), &s, &p, &local_path_info, &d)) {
if (min_group_id == -1 || d < min_distance) {
min_distance = d;
min_group_id = group_id;
min_shape_id = s;
closest_pt = p;
min_path_info = local_path_info;
}
}
}
if (min_group_id == -1) {
return min_distance;
}
min_distance *= weight;
auto inside = false;
const ShapeGroup &shape_group = scene.shape_groups[min_group_id];
if (shape_group.fill_color != nullptr) {
inside = is_inside(scene,
min_group_id,
pt,
nullptr);
if (inside) {
min_distance = -min_distance;
}
}
assert((min_group_id >= 0 && min_shape_id >= 0) || scene.num_shape_groups == 0);
if (d_dist != nullptr) {
auto d_abs_dist = inside ? -(*d_dist) : (*d_dist);
const ShapeGroup &shape_group = scene.shape_groups[min_group_id];
const Shape &shape = scene.shapes[min_shape_id];
ShapeGroup &d_shape_group = scene.d_shape_groups[min_group_id];
Shape &d_shape = scene.d_shapes[min_shape_id];
d_compute_distance(shape_group.canvas_to_shape,
shape_group.shape_to_canvas,
shape,
pt,
closest_pt,
min_path_info,
d_abs_dist,
d_shape_group.shape_to_canvas,
d_shape,
d_translation);
}
return min_distance;
}
// Gather d_color from d_image inside the filter kernel, normalize by
// weight_image.
DEVICE
Vector4f gather_d_color(const Filter &filter,
const float *d_color_image,
const float *weight_image,
int width,
int height,
const Vector2f &pt) {
auto x = int(pt.x);
auto y = int(pt.y);
auto radius = filter.radius;
assert(radius > 0);
auto ri = (int)ceil(radius);
auto d_color = Vector4f{0, 0, 0, 0};
for (int dy = -ri; dy <= ri; dy++) {
for (int dx = -ri; dx <= ri; dx++) {
auto xx = x + dx;
auto yy = y + dy;
if (xx >= 0 && xx < width && yy >= 0 && yy < height) {
auto xc = xx + 0.5f;
auto yc = yy + 0.5f;
auto filter_weight =
compute_filter_weight(filter, xc - pt.x, yc - pt.y);
// pixel = \sum weight * color / \sum weight
auto weight_sum = weight_image[yy * width + xx];
if (weight_sum > 0) {
d_color += (filter_weight / weight_sum) * Vector4f{
d_color_image[4 * (yy * width + xx) + 0],
d_color_image[4 * (yy * width + xx) + 1],
d_color_image[4 * (yy * width + xx) + 2],
d_color_image[4 * (yy * width + xx) + 3],
};
}
}
}
}
return d_color;
}
DEVICE
float smoothstep(float d) {
auto t = clamp((d + 1.f) / 2.f, 0.f, 1.f);
return t * t * (3 - 2 * t);
}
DEVICE
float d_smoothstep(float d, float d_ret) {
if (d < -1.f || d > 1.f) {
return 0.f;
}
auto t = (d + 1.f) / 2.f;
// ret = t * t * (3 - 2 * t)
// = 3 * t * t - 2 * t * t * t
auto d_t = d_ret * (6 * t - 6 * t * t);
return d_t / 2.f;
}
DEVICE
Vector4f sample_color_prefiltered(const SceneData &scene,
const Vector4f *background_color,
const Vector2f &screen_pt,
const Vector4f *d_color = nullptr,
Vector4f *d_background_color = nullptr,
float *d_translation = nullptr) {
// screen_pt is in screen space ([0, 1), [0, 1)),
// need to transform to canvas space
auto pt = screen_pt;
pt.x *= scene.canvas_width;
pt.y *= scene.canvas_height;
constexpr auto max_hit_shapes = 64;
constexpr auto max_bvh_stack_size = 64;
PrefilterFragment fragments[max_hit_shapes];
int bvh_stack[max_bvh_stack_size];
auto stack_size = 0;
auto num_fragments = 0;
bvh_stack[stack_size++] = 2 * scene.num_shape_groups - 2;
while (stack_size > 0) {
const BVHNode &node = scene.bvh_nodes[bvh_stack[--stack_size]];
if (node.child1 < 0) {
// leaf
auto group_id = node.child0;
const ShapeGroup &shape_group = scene.shape_groups[group_id];
if (shape_group.stroke_color != nullptr) {
auto min_shape_id = -1;
auto closest_pt = Vector2f{0, 0};
auto local_path_info = ClosestPointPathInfo{-1, -1, 0};
auto d = infinity<float>();
compute_distance(scene, group_id, pt, infinity<float>(),
&min_shape_id, &closest_pt, &local_path_info, &d);
assert(min_shape_id != -1);
const auto &shape = scene.shapes[min_shape_id];
auto w = smoothstep(fabs(d) + shape.stroke_width) -
smoothstep(fabs(d) - shape.stroke_width);
if (w > 0) {
auto color_alpha = sample_color(shape_group.stroke_color_type,
shape_group.stroke_color,
pt);
color_alpha[3] *= w;
PrefilterFragment f;
f.color = Vector3f{color_alpha[0], color_alpha[1], color_alpha[2]};
f.alpha = color_alpha[3];
f.group_id = group_id;
f.shape_id = min_shape_id;
f.distance = d;
f.closest_pt = closest_pt;
f.is_stroke = true;
f.path_info = local_path_info;
f.within_distance = true;
assert(num_fragments < max_hit_shapes);
fragments[num_fragments++] = f;
}
}
if (shape_group.fill_color != nullptr) {
auto min_shape_id = -1;
auto closest_pt = Vector2f{0, 0};
auto local_path_info = ClosestPointPathInfo{-1, -1, 0};
auto d = infinity<float>();
auto found = compute_distance(scene,
group_id,
pt,
1.f,
&min_shape_id,
&closest_pt,
&local_path_info,
&d);
auto inside = is_inside(scene, group_id, pt, nullptr);
if (found || inside) {
if (!inside) {
d = -d;
}
auto w = smoothstep(d);
if (w > 0) {
auto color_alpha = sample_color(shape_group.fill_color_type,
shape_group.fill_color,
pt);
color_alpha[3] *= w;
PrefilterFragment f;
f.color = Vector3f{color_alpha[0], color_alpha[1], color_alpha[2]};
f.alpha = color_alpha[3];
f.group_id = group_id;
f.shape_id = min_shape_id;
f.distance = d;
f.closest_pt = closest_pt;
f.is_stroke = false;
f.path_info = local_path_info;
f.within_distance = found;
assert(num_fragments < max_hit_shapes);
fragments[num_fragments++] = f;
}
}
}
} else {
assert(node.child0 >= 0 && node.child1 >= 0);
const AABB &b0 = scene.bvh_nodes[node.child0].box;
if (inside(b0, pt, scene.bvh_nodes[node.child0].max_radius)) {
bvh_stack[stack_size++] = node.child0;
}
const AABB &b1 = scene.bvh_nodes[node.child1].box;
if (inside(b1, pt, scene.bvh_nodes[node.child1].max_radius)) {
bvh_stack[stack_size++] = node.child1;
}
assert(stack_size <= max_bvh_stack_size);
}
}
if (num_fragments <= 0) {
if (background_color != nullptr) {
if (d_background_color != nullptr) {
*d_background_color = *d_color;
}
return *background_color;
}
return Vector4f{0, 0, 0, 0};
}
// Sort the fragments from back to front (i.e. increasing order of group id)
// https://github.com/frigaut/yorick-imutil/blob/master/insort.c#L37
for (int i = 1; i < num_fragments; i++) {
auto j = i;
auto temp = fragments[j];
while (j > 0 && fragments[j - 1].group_id > temp.group_id) {
fragments[j] = fragments[j - 1];
j--;
}
fragments[j] = temp;
}
// Blend the color
Vector3f accum_color[max_hit_shapes];
float accum_alpha[max_hit_shapes];
auto first_alpha = 0.f;
auto first_color = Vector3f{0, 0, 0};
if (background_color != nullptr) {
first_alpha = background_color->w;
first_color = Vector3f{background_color->x,
background_color->y,
background_color->z};
}
for (int i = 0; i < num_fragments; i++) {
const PrefilterFragment &fragment = fragments[i];
auto new_color = fragment.color;
auto new_alpha = fragment.alpha;
auto prev_alpha = i > 0 ? accum_alpha[i - 1] : first_alpha;
auto prev_color = i > 0 ? accum_color[i - 1] : first_color;
// prev_color is alpha premultiplied, don't need to multiply with
// prev_alpha
accum_color[i] = prev_color * (1 - new_alpha) + new_alpha * new_color;
accum_alpha[i] = prev_alpha * (1 - new_alpha) + new_alpha;
}
auto final_color = accum_color[num_fragments - 1];
auto final_alpha = accum_alpha[num_fragments - 1];
if (final_alpha > 1e-6f) {
final_color /= final_alpha;
}
assert(isfinite(final_color));
assert(isfinite(final_alpha));
if (d_color != nullptr) {
// Backward pass
auto d_final_color = Vector3f{(*d_color)[0], (*d_color)[1], (*d_color)[2]};
auto d_final_alpha = (*d_color)[3];
auto d_curr_color = d_final_color;
auto d_curr_alpha = d_final_alpha;
if (final_alpha > 1e-6f) {
// final_color = curr_color / final_alpha
d_curr_color = d_final_color / final_alpha;
d_curr_alpha -= sum(d_final_color * final_color) / final_alpha;
}
assert(isfinite(*d_color));
assert(isfinite(d_curr_color));
assert(isfinite(d_curr_alpha));
for (int i = num_fragments - 1; i >= 0; i--) {
// color[n] = prev_color * (1 - new_alpha) + new_alpha * new_color;
// alpha[n] = prev_alpha * (1 - new_alpha) + new_alpha;
auto prev_alpha = i > 0 ? accum_alpha[i - 1] : first_alpha;
auto prev_color = i > 0 ? accum_color[i - 1] : first_color;
auto d_prev_alpha = d_curr_alpha * (1.f - fragments[i].alpha);
auto d_alpha_i = d_curr_alpha * (1.f - prev_alpha);
d_alpha_i += sum(d_curr_color * (fragments[i].color - prev_color));
auto d_prev_color = d_curr_color * (1 - fragments[i].alpha);
auto d_color_i = d_curr_color * fragments[i].alpha;
auto group_id = fragments[i].group_id;
if (fragments[i].is_stroke) {
const auto &shape = scene.shapes[fragments[i].shape_id];
auto d = fragments[i].distance;
auto abs_d_plus_width = fabs(d) + shape.stroke_width;
auto abs_d_minus_width = fabs(d) - shape.stroke_width;
auto w = smoothstep(abs_d_plus_width) -
smoothstep(abs_d_minus_width);
if (w != 0) {
auto d_w = w > 0 ? (fragments[i].alpha / w) * d_alpha_i : 0.f;
d_alpha_i *= w;
// Backprop to color
d_sample_color(scene.shape_groups[group_id].stroke_color_type,
scene.shape_groups[group_id].stroke_color,
pt,
Vector4f{d_color_i[0], d_color_i[1], d_color_i[2], d_alpha_i},
scene.d_shape_groups[group_id].stroke_color,
d_translation);
auto d_abs_d_plus_width = d_smoothstep(abs_d_plus_width, d_w);
auto d_abs_d_minus_width = -d_smoothstep(abs_d_minus_width, d_w);
auto d_d = d_abs_d_plus_width + d_abs_d_minus_width;
if (d < 0) {
d_d = -d_d;
}
auto d_stroke_width = d_abs_d_plus_width - d_abs_d_minus_width;
const auto &shape_group = scene.shape_groups[group_id];
ShapeGroup &d_shape_group = scene.d_shape_groups[group_id];
Shape &d_shape = scene.d_shapes[fragments[i].shape_id];
if (fabs(d_d) > 1e-10f) {
d_compute_distance(shape_group.canvas_to_shape,
shape_group.shape_to_canvas,
shape,
pt,
fragments[i].closest_pt,
fragments[i].path_info,
d_d,
d_shape_group.shape_to_canvas,
d_shape,
d_translation);
}
atomic_add(&d_shape.stroke_width, d_stroke_width);
}
} else {
const auto &shape = scene.shapes[fragments[i].shape_id];
auto d = fragments[i].distance;
auto w = smoothstep(d);
if (w != 0) {
// color_alpha[3] = color_alpha[3] * w;
auto d_w = w > 0 ? (fragments[i].alpha / w) * d_alpha_i : 0.f;
d_alpha_i *= w;
d_sample_color(scene.shape_groups[group_id].fill_color_type,
scene.shape_groups[group_id].fill_color,
pt,
Vector4f{d_color_i[0], d_color_i[1], d_color_i[2], d_alpha_i},
scene.d_shape_groups[group_id].fill_color,
d_translation);
// w = smoothstep(d)
auto d_d = d_smoothstep(d, d_w);
if (d < 0) {
d_d = -d_d;
}
const auto &shape_group = scene.shape_groups[group_id];
ShapeGroup &d_shape_group = scene.d_shape_groups[group_id];
Shape &d_shape = scene.d_shapes[fragments[i].shape_id];
if (fabs(d_d) > 1e-10f && fragments[i].within_distance) {
d_compute_distance(shape_group.canvas_to_shape,
shape_group.shape_to_canvas,
shape,
pt,
fragments[i].closest_pt,
fragments[i].path_info,
d_d,
d_shape_group.shape_to_canvas,
d_shape,
d_translation);
}
}
}
d_curr_color = d_prev_color;
d_curr_alpha = d_prev_alpha;
}
if (d_background_color != nullptr) {
d_background_color->x += d_curr_color.x;
d_background_color->y += d_curr_color.y;
d_background_color->z += d_curr_color.z;
d_background_color->w += d_curr_alpha;
}
}
return Vector4f{final_color[0], final_color[1], final_color[2], final_alpha};
}
struct weight_kernel {
DEVICE void operator()(int idx) {
auto rng_state = init_pcg32(idx, seed);
// height * width * num_samples_y * num_samples_x
auto sx = idx % num_samples_x;
auto sy = (idx / num_samples_x) % num_samples_y;
auto x = (idx / (num_samples_x * num_samples_y)) % width;
auto y = (idx / (num_samples_x * num_samples_y * width));
assert(y < height);
auto rx = next_pcg32_float(&rng_state);
auto ry = next_pcg32_float(&rng_state);
if (use_prefiltering) {
rx = ry = 0.5f;
}
auto pt = Vector2f{x + ((float)sx + rx) / num_samples_x,
y + ((float)sy + ry) / num_samples_y};
auto radius = scene.filter->radius;
assert(radius >= 0);
auto ri = (int)ceil(radius);
for (int dy = -ri; dy <= ri; dy++) {
for (int dx = -ri; dx <= ri; dx++) {
auto xx = x + dx;
auto yy = y + dy;
if (xx >= 0 && xx < width && yy >= 0 && yy < height) {
auto xc = xx + 0.5f;
auto yc = yy + 0.5f;
auto filter_weight = compute_filter_weight(*scene.filter,
xc - pt.x,
yc - pt.y);
atomic_add(weight_image[yy * width + xx], filter_weight);
}
}
}
}
SceneData scene;
float *weight_image;
int width;
int height;
int num_samples_x;
int num_samples_y;
uint64_t seed;
bool use_prefiltering;
};
// We use a "mega kernel" for rendering
struct render_kernel {
DEVICE void operator()(int idx) {
// height * width * num_samples_y * num_samples_x
auto pt = Vector2f{0, 0};
auto x = 0;
auto y = 0;
if (eval_positions == nullptr) {
auto rng_state = init_pcg32(idx, seed);
auto sx = idx % num_samples_x;
auto sy = (idx / num_samples_x) % num_samples_y;
x = (idx / (num_samples_x * num_samples_y)) % width;
y = (idx / (num_samples_x * num_samples_y * width));
assert(x < width && y < height);
auto rx = next_pcg32_float(&rng_state);
auto ry = next_pcg32_float(&rng_state);
if (use_prefiltering) {
rx = ry = 0.5f;
}
pt = Vector2f{x + ((float)sx + rx) / num_samples_x,
y + ((float)sy + ry) / num_samples_y};
} else {
pt = Vector2f{eval_positions[2 * idx],
eval_positions[2 * idx + 1]};
x = int(pt.x);
y = int(pt.y);
}
// normalize pt to [0, 1]
auto npt = pt;
npt.x /= width;
npt.y /= height;
auto num_samples = num_samples_x * num_samples_y;
if (render_image != nullptr || d_render_image != nullptr) {
Vector4f d_color = Vector4f{0, 0, 0, 0};
if (d_render_image != nullptr) {
// Gather d_color from d_render_image inside the filter kernel
// normalize using weight_image
d_color = gather_d_color(*scene.filter,
d_render_image,
weight_image,
width,
height,
pt);
}
auto color = Vector4f{0, 0, 0, 0};
if (use_prefiltering) {
color = sample_color_prefiltered(scene,
background_image != nullptr ? (const Vector4f*)&background_image[4 * ((y * width) + x)] : nullptr,
npt,
d_render_image != nullptr ? &d_color : nullptr,
d_background_image != nullptr ? (Vector4f*)&d_background_image[4 * ((y * width) + x)] : nullptr,
d_translation != nullptr ? &d_translation[2 * (y * width + x)] : nullptr);
} else {
color = sample_color(scene,
background_image != nullptr ? (const Vector4f*)&background_image[4 * ((y * width) + x)] : nullptr,
npt,
d_render_image != nullptr ? &d_color : nullptr,
nullptr,
d_background_image != nullptr ? (Vector4f*)&d_background_image[4 * ((y * width) + x)] : nullptr,
d_translation != nullptr ? &d_translation[2 * (y * width + x)] : nullptr);
}
assert(isfinite(color));
// Splat color onto render_image
auto radius = scene.filter->radius;
assert(radius >= 0);
auto ri = (int)ceil(radius);
for (int dy = -ri; dy <= ri; dy++) {
for (int dx = -ri; dx <= ri; dx++) {
auto xx = x + dx;
auto yy = y + dy;
if (xx >= 0 && xx < width && yy >= 0 && yy < height &&
weight_image[yy * width + xx] > 0) {
auto weight_sum = weight_image[yy * width + xx];
auto xc = xx + 0.5f;
auto yc = yy + 0.5f;
auto filter_weight = compute_filter_weight(*scene.filter,
xc - pt.x,
yc - pt.y);
auto weighted_color = filter_weight * color / weight_sum;
if (render_image != nullptr) {
atomic_add(render_image[4 * (yy * width + xx) + 0],
weighted_color[0]);
atomic_add(render_image[4 * (yy * width + xx) + 1],
weighted_color[1]);
atomic_add(render_image[4 * (yy * width + xx) + 2],
weighted_color[2]);
atomic_add(render_image[4 * (yy * width + xx) + 3],
weighted_color[3]);
}
if (d_render_image != nullptr) {
// Backprop to filter_weight
// pixel = \sum weight * color / \sum weight
auto d_pixel = Vector4f{
d_render_image[4 * (yy * width + xx) + 0],
d_render_image[4 * (yy * width + xx) + 1],
d_render_image[4 * (yy * width + xx) + 2],
d_render_image[4 * (yy * width + xx) + 3],
};
auto d_weight =
(dot(d_pixel, color) * weight_sum -
filter_weight * dot(d_pixel, color) * (weight_sum - filter_weight)) /
square(weight_sum);
d_compute_filter_weight(*scene.filter,
xc - pt.x,
yc - pt.y,
d_weight,
scene.d_filter);
}
}
}
}
}
if (sdf_image != nullptr || d_sdf_image != nullptr) {
float d_dist = 0.f;
if (d_sdf_image != nullptr) {
if (eval_positions == nullptr) {
d_dist = d_sdf_image[y * width + x];
} else {
d_dist = d_sdf_image[idx];
}
}
auto weight = eval_positions == nullptr ? 1.f / num_samples : 1.f;
auto dist = sample_distance(scene, npt, weight,
d_sdf_image != nullptr ? &d_dist : nullptr,
d_translation != nullptr ? &d_translation[2 * (y * width + x)] : nullptr);
if (sdf_image != nullptr) {
if (eval_positions == nullptr) {
atomic_add(sdf_image[y * width + x], dist);
} else {
atomic_add(sdf_image[idx], dist);
}
}
}
}
SceneData scene;
float *background_image;
float *render_image;
float *weight_image;
float *sdf_image;
float *d_background_image;
float *d_render_image;
float *d_sdf_image;
float *d_translation;
int width;
int height;
int num_samples_x;
int num_samples_y;
uint64_t seed;
bool use_prefiltering;
float *eval_positions;
};
struct BoundarySample {
Vector2f pt;
Vector2f local_pt;
Vector2f normal;
int shape_group_id;
int shape_id;
float t;
BoundaryData data;
float pdf;
};
struct sample_boundary_kernel {
DEVICE void operator()(int idx) {
boundary_samples[idx].pt = Vector2f{0, 0};
boundary_samples[idx].shape_id = -1;
boundary_ids[idx] = idx;
morton_codes[idx] = 0;
auto rng_state = init_pcg32(idx, seed);
auto u = next_pcg32_float(&rng_state);
// Sample a shape
auto sample_id = sample(scene.sample_shapes_cdf,
scene.num_total_shapes,
u);
assert(sample_id >= 0 && sample_id < scene.num_total_shapes);
auto shape_id = scene.sample_shape_id[sample_id];
assert(shape_id >= 0 && shape_id < scene.num_shapes);
auto shape_group_id = scene.sample_group_id[sample_id];
assert(shape_group_id >= 0 && shape_group_id < scene.num_shape_groups);
auto shape_pmf = scene.sample_shapes_pmf[shape_id];
if (shape_pmf <= 0) {
return;
}
// Sample a point on the boundary of the shape
auto boundary_pdf = 0.f;
auto normal = Vector2f{0, 0};
auto t = next_pcg32_float(&rng_state);
BoundaryData boundary_data;
const ShapeGroup &shape_group = scene.shape_groups[shape_group_id];
auto local_boundary_pt = sample_boundary(
scene, shape_group_id, shape_id,
t, normal, boundary_pdf, boundary_data);
if (boundary_pdf <= 0) {
return;
}
// local_boundary_pt & normal are in shape's local space,
// transform them to canvas space
auto boundary_pt = xform_pt(shape_group.shape_to_canvas, local_boundary_pt);
normal = xform_normal(shape_group.canvas_to_shape, normal);
// Normalize boundary_pt to [0, 1)
boundary_pt.x /= scene.canvas_width;
boundary_pt.y /= scene.canvas_height;
boundary_samples[idx].pt = boundary_pt;
boundary_samples[idx].local_pt = local_boundary_pt;
boundary_samples[idx].normal = normal;
boundary_samples[idx].shape_group_id = shape_group_id;
boundary_samples[idx].shape_id = shape_id;
boundary_samples[idx].t = t;
boundary_samples[idx].data = boundary_data;
boundary_samples[idx].pdf = shape_pmf * boundary_pdf;
TVector2<uint32_t> p_i{boundary_pt.x * 1023, boundary_pt.y * 1023};
morton_codes[idx] = (expand_bits(p_i.x) << 1u) |
(expand_bits(p_i.y) << 0u);
}
SceneData scene;
uint64_t seed;
BoundarySample *boundary_samples;
int *boundary_ids;
uint32_t *morton_codes;
};
struct render_edge_kernel {
DEVICE void operator()(int idx) {
auto bid = boundary_ids[idx];
if (boundary_samples[bid].shape_id == -1) {
return;
}
auto boundary_pt = boundary_samples[bid].pt;
auto local_boundary_pt = boundary_samples[bid].local_pt;
auto normal = boundary_samples[bid].normal;
auto shape_group_id = boundary_samples[bid].shape_group_id;
auto shape_id = boundary_samples[bid].shape_id;
auto t = boundary_samples[bid].t;
auto boundary_data = boundary_samples[bid].data;
auto pdf = boundary_samples[bid].pdf;
const ShapeGroup &shape_group = scene.shape_groups[shape_group_id];
auto bx = int(boundary_pt.x * width);
auto by = int(boundary_pt.y * height);
if (bx < 0 || bx >= width || by < 0 || by >= height) {
return;
}
// Sample the two sides of the boundary
auto inside_query = EdgeQuery{shape_group_id, shape_id, false};
auto outside_query = EdgeQuery{shape_group_id, shape_id, false};
auto color_inside = sample_color(scene,
background_image != nullptr ? (const Vector4f *)&background_image[4 * ((by * width) + bx)] : nullptr,
boundary_pt - 1e-4f * normal,
nullptr, &inside_query);
auto color_outside = sample_color(scene,
background_image != nullptr ? (const Vector4f *)&background_image[4 * ((by * width) + bx)] : nullptr,
boundary_pt + 1e-4f * normal,
nullptr, &outside_query);
if (!inside_query.hit && !outside_query.hit) {
// occluded
return;
}
if (!inside_query.hit) {
normal = -normal;
swap_(inside_query, outside_query);
swap_(color_inside, color_outside);
}
// Boundary point in screen space
auto sboundary_pt = boundary_pt;
sboundary_pt.x *= width;
sboundary_pt.y *= height;
auto d_color = gather_d_color(*scene.filter,
d_render_image,
weight_image,
width,
height,
sboundary_pt);
// Normalization factor
d_color /= float(scene.canvas_width * scene.canvas_height);
assert(isfinite(d_color));
assert(isfinite(pdf) && pdf > 0);
auto contrib = dot(color_inside - color_outside, d_color) / pdf;
ShapeGroup &d_shape_group = scene.d_shape_groups[shape_group_id];
accumulate_boundary_gradient(scene.shapes[shape_id],
contrib, t, normal, boundary_data, scene.d_shapes[shape_id],
shape_group.shape_to_canvas, local_boundary_pt, d_shape_group.shape_to_canvas);
// Don't need to backprop to filter weights:
// \int f'(x) g(x) dx doesn't contain discontinuities
// if f is continuous, even if g is discontinuous
if (d_translation != nullptr) {
// According to Reynold transport theorem,
// the Jacobian of the boundary integral is dot(velocity, normal)
// The velocity of the object translating x is (1, 0)
// The velocity of the object translating y is (0, 1)
atomic_add(&d_translation[2 * (by * width + bx) + 0], normal.x * contrib);
atomic_add(&d_translation[2 * (by * width + bx) + 1], normal.y * contrib);
}
}
SceneData scene;
const float *background_image;
const BoundarySample *boundary_samples;
const int *boundary_ids;
float *weight_image;
float *d_render_image;
float *d_translation;
int width;
int height;
int num_samples_x;
int num_samples_y;
};
void render(std::shared_ptr<Scene> scene,
ptr<float> background_image,
ptr<float> render_image,
ptr<float> render_sdf,
int width,
int height,
int num_samples_x,
int num_samples_y,
uint64_t seed,
ptr<float> d_background_image,
ptr<float> d_render_image,
ptr<float> d_render_sdf,
ptr<float> d_translation,
bool use_prefiltering,
ptr<float> eval_positions,
int num_eval_positions) {
#ifdef __NVCC__
int old_device_id = -1;
if (scene->use_gpu) {
checkCuda(cudaGetDevice(&old_device_id));
if (scene->gpu_index != -1) {
checkCuda(cudaSetDevice(scene->gpu_index));
}
}
#endif
parallel_init();
float *weight_image = nullptr;
// Allocate and zero the weight image
if (scene->use_gpu) {
#ifdef __CUDACC__
if (eval_positions.get() == nullptr) {
checkCuda(cudaMallocManaged(&weight_image, width * height * sizeof(float)));
cudaMemset(weight_image, 0, width * height * sizeof(float));
}
#else
assert(false);
#endif
} else {
if (eval_positions.get() == nullptr) {
weight_image = (float*)malloc(width * height * sizeof(float));
memset(weight_image, 0, width * height * sizeof(float));
}
}
if (render_image.get() != nullptr || d_render_image.get() != nullptr ||
render_sdf.get() != nullptr || d_render_sdf.get() != nullptr) {
if (weight_image != nullptr) {
parallel_for(weight_kernel{
get_scene_data(*scene.get()),
weight_image,
width,
height,
num_samples_x,
num_samples_y,
seed
}, width * height * num_samples_x * num_samples_y, scene->use_gpu);
}
auto num_samples = eval_positions.get() == nullptr ?
width * height * num_samples_x * num_samples_y : num_eval_positions;
parallel_for(render_kernel{
get_scene_data(*scene.get()),
background_image.get(),
render_image.get(),
weight_image,
render_sdf.get(),
d_background_image.get(),
d_render_image.get(),
d_render_sdf.get(),
d_translation.get(),
width,
height,
num_samples_x,
num_samples_y,
seed,
use_prefiltering,
eval_positions.get()
}, num_samples, scene->use_gpu);
}
// Boundary sampling
if (!use_prefiltering && d_render_image.get() != nullptr) {
auto num_samples = width * height * num_samples_x * num_samples_y;
BoundarySample *boundary_samples = nullptr;
int *boundary_ids = nullptr; // for sorting
uint32_t *morton_codes = nullptr; // for sorting
// Allocate boundary samples
if (scene->use_gpu) {
#ifdef __CUDACC__
checkCuda(cudaMallocManaged(&boundary_samples,
num_samples * sizeof(BoundarySample)));
checkCuda(cudaMallocManaged(&boundary_ids,
num_samples * sizeof(int)));
checkCuda(cudaMallocManaged(&morton_codes,
num_samples * sizeof(uint32_t)));
#else
assert(false);
#endif
} else {
boundary_samples = (BoundarySample*)malloc(
num_samples * sizeof(BoundarySample));
boundary_ids = (int*)malloc(
num_samples * sizeof(int));
morton_codes = (uint32_t*)malloc(
num_samples * sizeof(uint32_t));
}
// Edge sampling
// We sort the boundary samples for better thread coherency
parallel_for(sample_boundary_kernel{
get_scene_data(*scene.get()),
seed,
boundary_samples,
boundary_ids,
morton_codes
}, num_samples, scene->use_gpu);
if (scene->use_gpu) {
thrust::sort_by_key(thrust::device, morton_codes, morton_codes + num_samples, boundary_ids);
} else {
// Don't need to sort for CPU, we are not using SIMD hardware anyway.
// thrust::sort_by_key(thrust::host, morton_codes, morton_codes + num_samples, boundary_ids);
}
parallel_for(render_edge_kernel{
get_scene_data(*scene.get()),
background_image.get(),
boundary_samples,
boundary_ids,
weight_image,
d_render_image.get(),
d_translation.get(),
width,
height,
num_samples_x,
num_samples_y
}, num_samples, scene->use_gpu);
if (scene->use_gpu) {
#ifdef __CUDACC__
checkCuda(cudaFree(boundary_samples));
checkCuda(cudaFree(boundary_ids));
checkCuda(cudaFree(morton_codes));
#else
assert(false);
#endif
} else {
free(boundary_samples);
free(boundary_ids);
free(morton_codes);
}
}
// Clean up weight image
if (scene->use_gpu) {
#ifdef __CUDACC__
checkCuda(cudaFree(weight_image));
#else
assert(false);
#endif
} else {
free(weight_image);
}
if (scene->use_gpu) {
cuda_synchronize();
}
parallel_cleanup();
#ifdef __NVCC__
if (old_device_id != -1) {
checkCuda(cudaSetDevice(old_device_id));
}
#endif
}
PYBIND11_MODULE(diffvg, m) {
m.doc() = "Differential Vector Graphics";
py::class_<ptr<void>>(m, "void_ptr")
.def(py::init<std::size_t>())
.def("as_size_t", &ptr<void>::as_size_t);
py::class_<ptr<float>>(m, "float_ptr")
.def(py::init<std::size_t>());
py::class_<ptr<int>>(m, "int_ptr")
.def(py::init<std::size_t>());
py::class_<Vector2f>(m, "Vector2f")
.def(py::init<float, float>())
.def_readwrite("x", &Vector2f::x)
.def_readwrite("y", &Vector2f::y);
py::class_<Vector3f>(m, "Vector3f")
.def(py::init<float, float, float>())
.def_readwrite("x", &Vector3f::x)
.def_readwrite("y", &Vector3f::y)
.def_readwrite("z", &Vector3f::z);
py::class_<Vector4f>(m, "Vector4f")
.def(py::init<float, float, float, float>())
.def_readwrite("x", &Vector4f::x)
.def_readwrite("y", &Vector4f::y)
.def_readwrite("z", &Vector4f::z)
.def_readwrite("w", &Vector4f::w);
py::enum_<ShapeType>(m, "ShapeType")
.value("circle", ShapeType::Circle)
.value("ellipse", ShapeType::Ellipse)
.value("path", ShapeType::Path)
.value("rect", ShapeType::Rect);
py::class_<Circle>(m, "Circle")
.def(py::init<float, Vector2f>())
.def("get_ptr", &Circle::get_ptr)
.def_readonly("radius", &Circle::radius)
.def_readonly("center", &Circle::center);
py::class_<Ellipse>(m, "Ellipse")
.def(py::init<Vector2f, Vector2f>())
.def("get_ptr", &Ellipse::get_ptr)
.def_readonly("radius", &Ellipse::radius)
.def_readonly("center", &Ellipse::center);
py::class_<Path>(m, "Path")
.def(py::init<ptr<int>, ptr<float>, ptr<float>, int, int, bool, bool>())
.def("get_ptr", &Path::get_ptr)
.def("has_thickness", &Path::has_thickness)
.def("copy_to", &Path::copy_to)
.def_readonly("num_points", &Path::num_points);
py::class_<Rect>(m, "Rect")
.def(py::init<Vector2f, Vector2f>())
.def("get_ptr", &Rect::get_ptr)
.def_readonly("p_min", &Rect::p_min)
.def_readonly("p_max", &Rect::p_max);
py::enum_<ColorType>(m, "ColorType")
.value("constant", ColorType::Constant)
.value("linear_gradient", ColorType::LinearGradient)
.value("radial_gradient", ColorType::RadialGradient);
py::class_<Constant>(m, "Constant")
.def(py::init<Vector4f>())
.def("get_ptr", &Constant::get_ptr)
.def_readonly("color", &Constant::color);
py::class_<LinearGradient>(m, "LinearGradient")
.def(py::init<Vector2f, Vector2f, int, ptr<float>, ptr<float>>())
.def("get_ptr", &LinearGradient::get_ptr)
.def("copy_to", &LinearGradient::copy_to)
.def_readonly("begin", &LinearGradient::begin)
.def_readonly("end", &LinearGradient::end)
.def_readonly("num_stops", &LinearGradient::num_stops);
py::class_<RadialGradient>(m, "RadialGradient")
.def(py::init<Vector2f, Vector2f, int, ptr<float>, ptr<float>>())
.def("get_ptr", &RadialGradient::get_ptr)
.def("copy_to", &RadialGradient::copy_to)
.def_readonly("center", &RadialGradient::center)
.def_readonly("radius", &RadialGradient::radius)
.def_readonly("num_stops", &RadialGradient::num_stops);
py::class_<Shape>(m, "Shape")
.def(py::init<ShapeType, ptr<void>, float>())
.def("as_circle", &Shape::as_circle)
.def("as_ellipse", &Shape::as_ellipse)
.def("as_path", &Shape::as_path)
.def("as_rect", &Shape::as_rect)
.def_readonly("type", &Shape::type)
.def_readonly("stroke_width", &Shape::stroke_width);
py::class_<ShapeGroup>(m, "ShapeGroup")
.def(py::init<ptr<int>,
int,
ColorType,
ptr<void>,
ColorType,
ptr<void>,
bool,
ptr<float>>())
.def("fill_color_as_constant", &ShapeGroup::fill_color_as_constant)
.def("fill_color_as_linear_gradient", &ShapeGroup::fill_color_as_linear_gradient)
.def("fill_color_as_radial_gradient", &ShapeGroup::fill_color_as_radial_gradient)
.def("stroke_color_as_constant", &ShapeGroup::stroke_color_as_constant)
.def("stroke_color_as_linear_gradient", &ShapeGroup::stroke_color_as_linear_gradient)
.def("stroke_color_as_radial_gradient", &ShapeGroup::fill_color_as_radial_gradient)
.def("has_fill_color", &ShapeGroup::has_fill_color)
.def("has_stroke_color", &ShapeGroup::has_stroke_color)
.def("copy_to", &ShapeGroup::copy_to)
.def_readonly("fill_color_type", &ShapeGroup::fill_color_type)
.def_readonly("stroke_color_type", &ShapeGroup::stroke_color_type);
py::enum_<FilterType>(m, "FilterType")
.value("box", FilterType::Box)
.value("tent", FilterType::Tent)
.value("parabolic", FilterType::RadialParabolic)
.value("hann", FilterType::Hann);
py::class_<Filter>(m, "Filter")
.def(py::init<FilterType,
float>());
py::class_<Scene, std::shared_ptr<Scene>>(m, "Scene")
.def(py::init<int,
int,
const std::vector<const Shape*> &,
const std::vector<const ShapeGroup*> &,
const Filter &,
bool,
int>())
.def("get_d_shape", &Scene::get_d_shape)
.def("get_d_shape_group", &Scene::get_d_shape_group)
.def("get_d_filter_radius", &Scene::get_d_filter_radius)
.def_readonly("num_shapes", &Scene::num_shapes)
.def_readonly("num_shape_groups", &Scene::num_shape_groups);
m.def("render", &render, "");
}