File size: 5,361 Bytes
4d85df4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
from pytorch_lightning import Trainer
from monoscene.models.monoscene import MonoScene
from monoscene.data.NYU.nyu_dm import NYUDataModule
from monoscene.data.semantic_kitti.kitti_dm import KittiDataModule
from monoscene.data.kitti_360.kitti_360_dm import Kitti360DataModule
# import hydra
from omegaconf import DictConfig
import torch
import numpy as np
import os
from hydra.utils import get_original_cwd
import gradio as gr
import numpy as np
import plotly.express as px
import pandas as pd
    

# @hydra.main(config_name="../config/monoscene.yaml")
def plot(input_img):
    torch.set_grad_enabled(False)

    # Setup dataloader
    # if config.dataset == "kitti" or config.dataset == "kitti_360":
    feature = 64
    project_scale = 2
    full_scene_size = (256, 256, 32)

    #     if config.dataset == "kitti":
    #         data_module = KittiDataModule(
    #             root=config.kitti_root,
    #             preprocess_root=config.kitti_preprocess_root,
    #             frustum_size=config.frustum_size,
    #             batch_size=int(config.batch_size / config.n_gpus),
    #             num_workers=int(config.num_workers_per_gpu * config.n_gpus),
    #         )
    #         data_module.setup()
    #         data_loader = data_module.val_dataloader()
    #         # data_loader = data_module.test_dataloader() # use this if you want to infer on test set
    #     else:
    #         data_module = Kitti360DataModule(
    #             root=config.kitti_360_root,
    #             sequences=[config.kitti_360_sequence],
    #             n_scans=2000,
    #             batch_size=1,
    #             num_workers=3,
    #         )
    #         data_module.setup()
    #         data_loader = data_module.dataloader()

    # elif config.dataset == "NYU":
    #     project_scale = 1
    #     feature = 200
    #     full_scene_size = (60, 36, 60)
    #     data_module = NYUDataModule(
    #         root=config.NYU_root,
    #         preprocess_root=config.NYU_preprocess_root,
    #         n_relations=config.n_relations,
    #         frustum_size=config.frustum_size,
    #         batch_size=int(config.batch_size / config.n_gpus),
    #         num_workers=int(config.num_workers_per_gpu * config.n_gpus),
    #     )
    #     data_module.setup()
    #     data_loader = data_module.val_dataloader()
    #     # data_loader = data_module.test_dataloader() # use this if you want to infer on test set
    # else:
    #     print("dataset not support")

    # Load pretrained models
    # if config.dataset == "NYU":
    #     model_path = os.path.join(
    #         get_original_cwd(), "trained_models", "monoscene_nyu.ckpt"
    #     )
    # else:
    # model_path = os.path.join(
    #     get_original_cwd(), "trained_models", "monoscene_kitti.ckpt"
    # )
    model_path = "trained_models/monoscene_kitti.ckpt"

    model = MonoScene.load_from_checkpoint(
        model_path,
        feature=feature,
        project_scale=project_scale,
        fp_loss=False,
        full_scene_size=full_scene_size,
    )
    model.cuda()
    model.eval()

    print(input_img.shape)
    
    x = np.arange(12).reshape(4, 3) / 12
    data = pd.DataFrame(data=x, columns=['x', 'y', 'z'])
    fig = px.scatter_3d(data, x="x", y="y", z="z")
    return fig

demo = gr.Interface(plot, gr.Image(shape=(200, 200)), gr.Plot())
demo.launch()

    

    # Save prediction and additional data 
    # to draw the viewing frustum and remove scene outside the room for NYUv2
    # output_path = os.path.join(config.output_path, config.dataset)
    # with torch.no_grad():
    #     for batch in tqdm(data_loader):
    #         batch["img"] = batch["img"].cuda()
    #         pred = model(batch)
    #         y_pred = torch.softmax(pred["ssc_logit"], dim=1).detach().cpu().numpy()
    #         y_pred = np.argmax(y_pred, axis=1)
    #         for i in range(config.batch_size):
    #             out_dict = {"y_pred": y_pred[i].astype(np.uint16)}
    #             if "target" in batch:
    #                 out_dict["target"] = (
    #                     batch["target"][i].detach().cpu().numpy().astype(np.uint16)
    #                 )

    #             if config.dataset == "NYU":
    #                 write_path = output_path
    #                 filepath = os.path.join(write_path, batch["name"][i] + ".pkl")
    #                 out_dict["cam_pose"] = batch["cam_pose"][i].detach().cpu().numpy()
    #                 out_dict["vox_origin"] = (
    #                     batch["vox_origin"][i].detach().cpu().numpy()
    #                 )
    #             else:
    #                 write_path = os.path.join(output_path, batch["sequence"][i])
    #                 filepath = os.path.join(write_path, batch["frame_id"][i] + ".pkl")
    #                 out_dict["fov_mask_1"] = (
    #                     batch["fov_mask_1"][i].detach().cpu().numpy()
    #                 )
    #                 out_dict["cam_k"] = batch["cam_k"][i].detach().cpu().numpy()
    #                 out_dict["T_velo_2_cam"] = (
    #                     batch["T_velo_2_cam"][i].detach().cpu().numpy()
    #                 )

    #             os.makedirs(write_path, exist_ok=True)
    #             with open(filepath, "wb") as handle:
    #                 pickle.dump(out_dict, handle)
    #                 print("wrote to", filepath)