anhquancao's picture
up
4d85df4
raw
history blame
4.57 kB
"""
Most of the code in this file is taken from https://github.com/waterljwant/SSC/blob/master/models/DDR.py
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
class SimpleRB(nn.Module):
def __init__(self, in_channel, norm_layer, bn_momentum):
super(SimpleRB, self).__init__()
self.path = nn.Sequential(
nn.Conv3d(in_channel, in_channel, kernel_size=3, padding=1, bias=False),
norm_layer(in_channel, momentum=bn_momentum),
nn.ReLU(),
nn.Conv3d(in_channel, in_channel, kernel_size=3, padding=1, bias=False),
norm_layer(in_channel, momentum=bn_momentum),
)
self.relu = nn.ReLU()
def forward(self, x):
residual = x
conv_path = self.path(x)
out = residual + conv_path
out = self.relu(out)
return out
"""
3D Residual Block,3x3x3 conv ==> 3 smaller 3D conv, refered from DDRNet
"""
class Bottleneck3D(nn.Module):
def __init__(
self,
inplanes,
planes,
norm_layer,
stride=1,
dilation=[1, 1, 1],
expansion=4,
downsample=None,
fist_dilation=1,
multi_grid=1,
bn_momentum=0.0003,
):
super(Bottleneck3D, self).__init__()
# often,planes = inplanes // 4
self.expansion = expansion
self.conv1 = nn.Conv3d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = norm_layer(planes, momentum=bn_momentum)
self.conv2 = nn.Conv3d(
planes,
planes,
kernel_size=(1, 1, 3),
stride=(1, 1, stride),
dilation=(1, 1, dilation[0]),
padding=(0, 0, dilation[0]),
bias=False,
)
self.bn2 = norm_layer(planes, momentum=bn_momentum)
self.conv3 = nn.Conv3d(
planes,
planes,
kernel_size=(1, 3, 1),
stride=(1, stride, 1),
dilation=(1, dilation[1], 1),
padding=(0, dilation[1], 0),
bias=False,
)
self.bn3 = norm_layer(planes, momentum=bn_momentum)
self.conv4 = nn.Conv3d(
planes,
planes,
kernel_size=(3, 1, 1),
stride=(stride, 1, 1),
dilation=(dilation[2], 1, 1),
padding=(dilation[2], 0, 0),
bias=False,
)
self.bn4 = norm_layer(planes, momentum=bn_momentum)
self.conv5 = nn.Conv3d(
planes, planes * self.expansion, kernel_size=(1, 1, 1), bias=False
)
self.bn5 = norm_layer(planes * self.expansion, momentum=bn_momentum)
self.relu = nn.ReLU(inplace=False)
self.relu_inplace = nn.ReLU(inplace=True)
self.downsample = downsample
self.dilation = dilation
self.stride = stride
self.downsample2 = nn.Sequential(
nn.AvgPool3d(kernel_size=(1, stride, 1), stride=(1, stride, 1)),
nn.Conv3d(planes, planes, kernel_size=1, stride=1, bias=False),
norm_layer(planes, momentum=bn_momentum),
)
self.downsample3 = nn.Sequential(
nn.AvgPool3d(kernel_size=(stride, 1, 1), stride=(stride, 1, 1)),
nn.Conv3d(planes, planes, kernel_size=1, stride=1, bias=False),
norm_layer(planes, momentum=bn_momentum),
)
self.downsample4 = nn.Sequential(
nn.AvgPool3d(kernel_size=(stride, 1, 1), stride=(stride, 1, 1)),
nn.Conv3d(planes, planes, kernel_size=1, stride=1, bias=False),
norm_layer(planes, momentum=bn_momentum),
)
def forward(self, x):
residual = x
out1 = self.relu(self.bn1(self.conv1(x)))
out2 = self.bn2(self.conv2(out1))
out2_relu = self.relu(out2)
out3 = self.bn3(self.conv3(out2_relu))
if self.stride != 1:
out2 = self.downsample2(out2)
out3 = out3 + out2
out3_relu = self.relu(out3)
out4 = self.bn4(self.conv4(out3_relu))
if self.stride != 1:
out2 = self.downsample3(out2)
out3 = self.downsample4(out3)
out4 = out4 + out2 + out3
out4_relu = self.relu(out4)
out5 = self.bn5(self.conv5(out4_relu))
if self.downsample is not None:
residual = self.downsample(x)
out = out5 + residual
out_relu = self.relu(out)
return out_relu