Spaces:
Runtime error
Runtime error
File size: 10,820 Bytes
4d85df4 97b5aba 4d85df4 97b5aba 4d85df4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
import numpy as np
import torch
import fusion
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
def read_calib(calib_path):
"""
Modify from https://github.com/utiasSTARS/pykitti/blob/d3e1bb81676e831886726cc5ed79ce1f049aef2c/pykitti/utils.py#L68
:param calib_path: Path to a calibration text file.
:return: dict with calibration matrices.
"""
calib_all = {}
with open(calib_path, "r") as f:
for line in f.readlines():
if line == "\n":
break
key, value = line.split(":", 1)
calib_all[key] = np.array([float(x) for x in value.split()])
# reshape matrices
calib_out = {}
# 3x4 projection matrix for left camera
calib_out["P2"] = calib_all["P2"].reshape(3, 4)
calib_out["Tr"] = np.identity(4) # 4x4 matrix
calib_out["Tr"][:3, :4] = calib_all["Tr"].reshape(3, 4)
return calib_out
def vox2pix(cam_E, cam_k,
vox_origin, voxel_size,
img_W, img_H,
scene_size):
"""
compute the 2D projection of voxels centroids
Parameters:
----------
cam_E: 4x4
=camera pose in case of NYUv2 dataset
=Transformation from camera to lidar coordinate in case of SemKITTI
cam_k: 3x3
camera intrinsics
vox_origin: (3,)
world(NYU)/lidar(SemKITTI) cooridnates of the voxel at index (0, 0, 0)
img_W: int
image width
img_H: int
image height
scene_size: (3,)
scene size in meter: (51.2, 51.2, 6.4) for SemKITTI and (4.8, 4.8, 2.88) for NYUv2
Returns
-------
projected_pix: (N, 2)
Projected 2D positions of voxels
fov_mask: (N,)
Voxels mask indice voxels inside image's FOV
pix_z: (N,)
Voxels'distance to the sensor in meter
"""
# Compute the x, y, z bounding of the scene in meter
vol_bnds = np.zeros((3,2))
vol_bnds[:,0] = vox_origin
vol_bnds[:,1] = vox_origin + np.array(scene_size)
# Compute the voxels centroids in lidar cooridnates
vol_dim = np.ceil((vol_bnds[:,1]- vol_bnds[:,0])/ voxel_size).copy(order='C').astype(int)
xv, yv, zv = np.meshgrid(
range(vol_dim[0]),
range(vol_dim[1]),
range(vol_dim[2]),
indexing='ij'
)
vox_coords = np.concatenate([
xv.reshape(1,-1),
yv.reshape(1,-1),
zv.reshape(1,-1)
], axis=0).astype(int).T
# Project voxels'centroid from lidar coordinates to camera coordinates
cam_pts = fusion.TSDFVolume.vox2world(vox_origin, vox_coords, voxel_size)
cam_pts = fusion.rigid_transform(cam_pts, cam_E)
# Project camera coordinates to pixel positions
projected_pix = fusion.TSDFVolume.cam2pix(cam_pts, cam_k)
pix_x, pix_y = projected_pix[:, 0], projected_pix[:, 1]
# Eliminate pixels outside view frustum
pix_z = cam_pts[:, 2]
fov_mask = np.logical_and(pix_x >= 0,
np.logical_and(pix_x < img_W,
np.logical_and(pix_y >= 0,
np.logical_and(pix_y < img_H,
pix_z > 0))))
return torch.from_numpy(projected_pix), torch.from_numpy(fov_mask), torch.from_numpy(pix_z)
def get_grid_coords(dims, resolution):
"""
:param dims: the dimensions of the grid [x, y, z] (i.e. [256, 256, 32])
:return coords_grid: is the center coords of voxels in the grid
"""
g_xx = np.arange(0, dims[0] + 1)
g_yy = np.arange(0, dims[1] + 1)
sensor_pose = 10
g_zz = np.arange(0, dims[2] + 1)
# Obtaining the grid with coords...
xx, yy, zz = np.meshgrid(g_xx[:-1], g_yy[:-1], g_zz[:-1])
coords_grid = np.array([xx.flatten(), yy.flatten(), zz.flatten()]).T
coords_grid = coords_grid.astype(np.float)
coords_grid = (coords_grid * resolution) + resolution / 2
temp = np.copy(coords_grid)
temp[:, 0] = coords_grid[:, 1]
temp[:, 1] = coords_grid[:, 0]
coords_grid = np.copy(temp)
return coords_grid
def get_projections(img_W, img_H):
scale_3ds = [1, 2]
data = {}
for scale_3d in scale_3ds:
scene_size = (51.2, 51.2, 6.4)
vox_origin = np.array([0, -25.6, -2])
voxel_size = 0.2
calib = read_calib("calib.txt")
cam_k = calib["P2"][:3, :3]
T_velo_2_cam = calib["Tr"]
# compute the 3D-2D mapping
projected_pix, fov_mask, pix_z = vox2pix(
T_velo_2_cam,
cam_k,
vox_origin,
voxel_size * scale_3d,
img_W,
img_H,
scene_size,
)
data["projected_pix_{}".format(scale_3d)] = projected_pix
data["pix_z_{}".format(scale_3d)] = pix_z
data["fov_mask_{}".format(scale_3d)] = fov_mask
return data
def majority_pooling(grid, k_size=2):
result = np.zeros(
(grid.shape[0] // k_size, grid.shape[1] // k_size, grid.shape[2] // k_size)
)
for xx in range(0, int(np.floor(grid.shape[0] / k_size))):
for yy in range(0, int(np.floor(grid.shape[1] / k_size))):
for zz in range(0, int(np.floor(grid.shape[2] / k_size))):
sub_m = grid[
(xx * k_size) : (xx * k_size) + k_size,
(yy * k_size) : (yy * k_size) + k_size,
(zz * k_size) : (zz * k_size) + k_size,
]
unique, counts = np.unique(sub_m, return_counts=True)
if True in ((unique != 0) & (unique != 255)):
# Remove counts with 0 and 255
counts = counts[((unique != 0) & (unique != 255))]
unique = unique[((unique != 0) & (unique != 255))]
else:
if True in (unique == 0):
counts = counts[(unique != 255)]
unique = unique[(unique != 255)]
value = unique[np.argmax(counts)]
result[xx, yy, zz] = value
return result
def draw(
voxels,
# T_velo_2_cam,
# vox_origin,
fov_mask,
# img_size,
# f,
voxel_size=0.2,
# d=7, # 7m - determine the size of the mesh representing the camera
):
fov_mask = fov_mask.reshape(-1)
# Compute the voxels coordinates
grid_coords = get_grid_coords(
[voxels.shape[0], voxels.shape[1], voxels.shape[2]], voxel_size
)
# Attach the predicted class to every voxel
grid_coords = np.vstack([grid_coords.T, voxels.reshape(-1)]).T
# Get the voxels inside FOV
fov_grid_coords = grid_coords[fov_mask, :]
# Get the voxels outside FOV
outfov_grid_coords = grid_coords[~fov_mask, :]
# Remove empty and unknown voxels
fov_voxels = fov_grid_coords[
(fov_grid_coords[:, 3] > 0) & (fov_grid_coords[:, 3] < 255), :
]
# print(np.unique(fov_voxels[:, 3], return_counts=True))
outfov_voxels = outfov_grid_coords[
(outfov_grid_coords[:, 3] > 0) & (outfov_grid_coords[:, 3] < 255), :
]
# figure = mlab.figure(size=(1400, 1400), bgcolor=(1, 1, 1))
colors = np.array(
[
[0,0,0],
[100, 150, 245],
[100, 230, 245],
[30, 60, 150],
[80, 30, 180],
[100, 80, 250],
[255, 30, 30],
[255, 40, 200],
[150, 30, 90],
[255, 0, 255],
[255, 150, 255],
[75, 0, 75],
[175, 0, 75],
[255, 200, 0],
[255, 120, 50],
[0, 175, 0],
[135, 60, 0],
[150, 240, 80],
[255, 240, 150],
[255, 0, 0],
]
).astype(np.uint8)
pts_colors = [f'rgb({colors[int(i)][0]}, {colors[int(i)][1]}, {colors[int(i)][2]})' for i in fov_voxels[:, 3]]
out_fov_colors = [f'rgb({colors[int(i)][0]//3*2}, {colors[int(i)][1]//3*2}, {colors[int(i)][2]//3*2})' for i in outfov_voxels[:, 3]]
pts_colors = pts_colors + out_fov_colors
fov_voxels = np.concatenate([fov_voxels, outfov_voxels], axis=0)
x = fov_voxels[:, 0].flatten()
y = fov_voxels[:, 1].flatten()
z = fov_voxels[:, 2].flatten()
# label = fov_voxels[:, 3].flatten()
fig = go.Figure(data=[go.Scatter3d(x=x, y=y, z=z,mode='markers',
marker=dict(
size=2,
color=pts_colors, # set color to an array/list of desired values
# colorscale='Viridis', # choose a colorscale
opacity=1.0,
symbol='square'
))])
fig.update_layout(
scene = dict(
aspectmode='data',
xaxis = dict(
backgroundcolor="rgb(255, 255, 255)",
gridcolor="black",
showbackground=True,
zerolinecolor="black",
nticks=4,
visible=False,
range=[-1,55],),
yaxis = dict(
backgroundcolor="rgb(255, 255, 255)",
gridcolor="black",
showbackground=True,
zerolinecolor="black",
visible=False,
nticks=4, range=[-1,55],),
zaxis = dict(
backgroundcolor="rgb(255, 255, 255)",
gridcolor="black",
showbackground=True,
zerolinecolor="black",
visible=False,
nticks=4, range=[-1,7],),
bgcolor="black",
),
)
# fig = px.scatter_3d(
# fov_voxels,
# x=fov_voxels[:, 0], y="y", z="z", color="label")
# Draw occupied inside FOV voxels
# plt_plot_fov = mlab.points3d(
# fov_voxels[:, 0],
# fov_voxels[:, 1],
# fov_voxels[:, 2],
# fov_voxels[:, 3],
# colormap="viridis",
# scale_factor=voxel_size - 0.05 * voxel_size,
# mode="cube",
# opacity=1.0,
# vmin=1,
# vmax=19,
# )
# # Draw occupied outside FOV voxels
# plt_plot_outfov = mlab.points3d(
# outfov_voxels[:, 0],
# outfov_voxels[:, 1],
# outfov_voxels[:, 2],
# outfov_voxels[:, 3],
# colormap="viridis",
# scale_factor=voxel_size - 0.05 * voxel_size,
# mode="cube",
# opacity=1.0,
# vmin=1,
# vmax=19,
# )
# plt_plot_fov.glyph.scale_mode = "scale_by_vector"
# plt_plot_outfov.glyph.scale_mode = "scale_by_vector"
# plt_plot_fov.module_manager.scalar_lut_manager.lut.table = colors
# outfov_colors = colors
# outfov_colors[:, :3] = outfov_colors[:, :3] // 3 * 2
# plt_plot_outfov.module_manager.scalar_lut_manager.lut.table = outfov_colors
# mlab.show()
return fig |