Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
from monoscene.DDR import Bottleneck3D | |
class ASPP(nn.Module): | |
""" | |
ASPP 3D | |
Adapt from https://github.com/cv-rits/LMSCNet/blob/main/LMSCNet/models/LMSCNet.py#L7 | |
""" | |
def __init__(self, planes, dilations_conv_list): | |
super().__init__() | |
# ASPP Block | |
self.conv_list = dilations_conv_list | |
self.conv1 = nn.ModuleList( | |
[ | |
nn.Conv3d( | |
planes, planes, kernel_size=3, padding=dil, dilation=dil, bias=False | |
) | |
for dil in dilations_conv_list | |
] | |
) | |
self.bn1 = nn.ModuleList( | |
[nn.BatchNorm3d(planes) for dil in dilations_conv_list] | |
) | |
self.conv2 = nn.ModuleList( | |
[ | |
nn.Conv3d( | |
planes, planes, kernel_size=3, padding=dil, dilation=dil, bias=False | |
) | |
for dil in dilations_conv_list | |
] | |
) | |
self.bn2 = nn.ModuleList( | |
[nn.BatchNorm3d(planes) for dil in dilations_conv_list] | |
) | |
self.relu = nn.ReLU() | |
def forward(self, x_in): | |
y = self.bn2[0](self.conv2[0](self.relu(self.bn1[0](self.conv1[0](x_in))))) | |
for i in range(1, len(self.conv_list)): | |
y += self.bn2[i](self.conv2[i](self.relu(self.bn1[i](self.conv1[i](x_in))))) | |
x_in = self.relu(y + x_in) # modified | |
return x_in | |
class SegmentationHead(nn.Module): | |
""" | |
3D Segmentation heads to retrieve semantic segmentation at each scale. | |
Formed by Dim expansion, Conv3D, ASPP block, Conv3D. | |
Taken from https://github.com/cv-rits/LMSCNet/blob/main/LMSCNet/models/LMSCNet.py#L7 | |
""" | |
def __init__(self, inplanes, planes, nbr_classes, dilations_conv_list): | |
super().__init__() | |
# First convolution | |
self.conv0 = nn.Conv3d(inplanes, planes, kernel_size=3, padding=1, stride=1) | |
# ASPP Block | |
self.conv_list = dilations_conv_list | |
self.conv1 = nn.ModuleList( | |
[ | |
nn.Conv3d( | |
planes, planes, kernel_size=3, padding=dil, dilation=dil, bias=False | |
) | |
for dil in dilations_conv_list | |
] | |
) | |
self.bn1 = nn.ModuleList( | |
[nn.BatchNorm3d(planes) for dil in dilations_conv_list] | |
) | |
self.conv2 = nn.ModuleList( | |
[ | |
nn.Conv3d( | |
planes, planes, kernel_size=3, padding=dil, dilation=dil, bias=False | |
) | |
for dil in dilations_conv_list | |
] | |
) | |
self.bn2 = nn.ModuleList( | |
[nn.BatchNorm3d(planes) for dil in dilations_conv_list] | |
) | |
self.relu = nn.ReLU() | |
self.conv_classes = nn.Conv3d( | |
planes, nbr_classes, kernel_size=3, padding=1, stride=1 | |
) | |
def forward(self, x_in): | |
# Convolution to go from inplanes to planes features... | |
x_in = self.relu(self.conv0(x_in)) | |
y = self.bn2[0](self.conv2[0](self.relu(self.bn1[0](self.conv1[0](x_in))))) | |
for i in range(1, len(self.conv_list)): | |
y += self.bn2[i](self.conv2[i](self.relu(self.bn1[i](self.conv1[i](x_in))))) | |
x_in = self.relu(y + x_in) # modified | |
x_in = self.conv_classes(x_in) | |
return x_in | |
class ProcessKitti(nn.Module): | |
def __init__(self, feature, norm_layer, bn_momentum, dilations=[1, 2, 3]): | |
super(Process, self).__init__() | |
self.main = nn.Sequential( | |
*[ | |
Bottleneck3D( | |
feature, | |
feature // 4, | |
bn_momentum=bn_momentum, | |
norm_layer=norm_layer, | |
dilation=[i, i, i], | |
) | |
for i in dilations | |
] | |
) | |
def forward(self, x): | |
return self.main(x) | |
class Process(nn.Module): | |
def __init__(self, feature, norm_layer, bn_momentum, dilations=[1, 2, 3]): | |
super(Process, self).__init__() | |
self.main = nn.Sequential( | |
*[ | |
Bottleneck3D( | |
feature, | |
feature // 4, | |
bn_momentum=bn_momentum, | |
norm_layer=norm_layer, | |
dilation=[i, i, i], | |
) | |
for i in dilations | |
] | |
) | |
def forward(self, x): | |
return self.main(x) | |
class Upsample(nn.Module): | |
def __init__(self, in_channels, out_channels, norm_layer, bn_momentum): | |
super(Upsample, self).__init__() | |
self.main = nn.Sequential( | |
nn.ConvTranspose3d( | |
in_channels, | |
out_channels, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
dilation=1, | |
output_padding=1, | |
), | |
norm_layer(out_channels, momentum=bn_momentum), | |
nn.ReLU(), | |
) | |
def forward(self, x): | |
return self.main(x) | |
class Downsample(nn.Module): | |
def __init__(self, feature, norm_layer, bn_momentum, expansion=8): | |
super(Downsample, self).__init__() | |
self.main = Bottleneck3D( | |
feature, | |
feature // 4, | |
bn_momentum=bn_momentum, | |
expansion=expansion, | |
stride=2, | |
downsample=nn.Sequential( | |
nn.AvgPool3d(kernel_size=2, stride=2), | |
nn.Conv3d( | |
feature, | |
int(feature * expansion / 4), | |
kernel_size=1, | |
stride=1, | |
bias=False, | |
), | |
norm_layer(int(feature * expansion / 4), momentum=bn_momentum), | |
), | |
norm_layer=norm_layer, | |
) | |
def forward(self, x): | |
return self.main(x) | |